
SUN600-(5KTL, 6KTL)-L0

User Manual

 Issue
 02

 Date
 2022-03-10

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2022. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

NUAWEI and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base Bantian, Longgang Shenzhen 518129 People's Republic of China

Website: <u>https://e.huawei.com</u>

About This Document

Purpose

This document describes the Smart Solar Inverter-(2KTL-6KTL)-L0 (inverter for short) in terms of its installation, electrical connection, commissioning, maintenance, and troubleshooting. Before installing and operating the inverter, ensure that you are familiar with the features, functions, and safety precautions provided in this document.

Intended Audience

This document is applicable to:

- Installers
- Users

Symbol Conventions

The symbols that may be found in this document are defined as follows.

Symbol	Description
A DANGER	Indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.
	Indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
	Indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.
NOTICE	Indicates a potentially hazardous situation which, if not avoided, could result in equipment damage, data loss, performance deterioration, or unanticipated results.
	NOTICE is used to address practices not related to personal injury.

Symbol	Description
û în Note	Supplements the important information in the main text. NOTE is used to address information not related to personal injury, equipment damage, and environment deterioration.

Change History

Changes between document issues are cumulative. The latest document issue contains all the changes made in earlier issues.

Issue 02 (2022-03-10)

- Updated 5.7 (Optional) Connecting Signal Cables.
- Updated 10.1 Inverter Technical Specifications.
- Updated A Grid Code.
- Updated C Setting Power Adjustment Parameters.

Issue 01 (2021-11-01)

This issue is the first official release.

Contents

About This Document	ii
1 Safety Information	1
1.1 General Safety	1
1.2 Personnel Requirements	2
1.3 Electrical Safety	3
1.4 Installation Environment Requirements	4
1.5 Mechanical Safety	4
1.6 Commissioning	5
1.7 Maintenance and Replacement	6
2 Product Introduction	7
2.1 Overview	7
2.2 Component Description	10
2.3 Label Description	11
2.3.1 Enclosure Labels	11
2.3.2 Product Nameplate	13
2.4 Working Principles	13
3 Inverter Storage	16
3 Inverter Storage 4 System Installation	
	17
4 System Installation	 17 17
4 System Installation 4.1 Checking Before the Installation	 17 17 18
 4 System Installation	 17 17 18 19
 4 System Installation. 4.1 Checking Before the Installation	17 17
 4 System Installation	17 17
 4 System Installation. 4.1 Checking Before the Installation. 4.2 Preparing Tools and Instruments. 4.3 Determining the Installation Position. 4.4 Moving an Inverter. 4.5 Installing a Inverter. 	17 17 18 19 22 23 23 24
 4 System Installation. 4.1 Checking Before the Installation. 4.2 Preparing Tools and Instruments. 4.3 Determining the Installation Position. 4.4 Moving an Inverter. 4.5 Installing a Inverter. 4.5.1 Wall-Mounted Installation. 	17 17 18 19 22 23 23 24 26
 4 System Installation. 4.1 Checking Before the Installation. 4.2 Preparing Tools and Instruments. 4.3 Determining the Installation Position. 4.4 Moving an Inverter. 4.5 Installing a Inverter. 4.5.1 Wall-Mounted Installation. 4.5.2 Support-Mounted Installation. 	
 4 System Installation	
 4 System Installation	17 17 18 19 22 23 24 24 26 29
 4 System Installation. 4.1 Checking Before the Installation. 4.2 Preparing Tools and Instruments. 4.3 Determining the Installation Position. 4.4 Moving an Inverter. 4.5 Installing a Inverter. 4.5.1 Wall-Mounted Installation. 4.5.2 Support-Mounted Installation. 5 Electrical Connection. 5.1 Preparing Cables. 5.2 Connecting PE Cables. 	17

5.6 Connecting DC Input Power Cables	40
5.7 (Optional) Connecting Signal Cables	44
6 System Commissioning	
6.1 Verification Before Power-On	
6.2 System Power-On	
7 Man-Machine Interaction	55
7.1 App Commissioning	
7.1.1 Downloading the FusionSolar App	55
7.1.2 (Optional) Registering an Installer Account	
7.1.3 Creating a PV Plant and a User	57
7.2 Parameters Settings	
7.2.1 Energy Control	57
7.2.1.1 Grid-tied Point Control	57
7.2.2 AFCI	61
7.2.3 IPS Check (for Italy CEI0-21 Grid Code Only)	
7.2.4 DRM (Australia AS4777)	65
8 System Maintenance	67
8.1 System Power-Off	67
8.2 Routine Maintenance	
8.3 Troubleshooting	68
9 Inverter Disposal	80
9.1 Removing a Inverter	80
9.2 Packing a Inverter	
9.3 Disposing a Inverter	
10 Technical Parameters	
10.1 Inverter Technical Specifications	
A Grid Code	86
B Device Commissioning	
C Setting Power Adjustment Parameters	93
D Resetting Password	
E Rapid Shutdown	
F Locating Insulation Resistance Faults	
G DRM Configuration Guide for Standard As NZS4777.2	
H Acronyms and Abbreviations	

Safety Information

1.1 General Safety

Statement

Before installing, operating, and maintaining the equipment, read this document and observe all the safety instructions on the equipment and in this document.

The "NOTICE", "CAUTION", "WARNING", and "DANGER" statements in this document do not cover all the safety instructions. They are only supplements to the safety instructions. Will not be liable for any consequence caused by the violation of general safety requirements or design, production, and usage safety standards.

Ensure that the equipment is used in environments that meet its design specifications. Otherwise, the equipment may become faulty, and the resulting equipment malfunction, component damage, personal injuries, or property damage are not covered under the warranty.

Follow local laws and regulations when installing, operating, or maintaining the equipment. The safety instructions in this document are only supplements to local laws and regulations.

Will not be liable for any consequences of the following circumstances:

- Operation beyond the conditions specified in this document
- Installation or use in environments which are not specified in relevant international or national standards
- Unauthorized modifications to the product or software code or removal of the product
- Failure to follow the operation instructions and safety precautions on the product and in this document
- Equipment damage due to force majeure, such as earthquakes, fire, and storms
- Damage caused during transportation by the customer
- Storage conditions that do not meet the requirements specified in this document

General Requirements

A DANGER

Do not work with power on during installation.

- Do not install, use, or operate outdoor equipment and cables (including but not limited to moving equipment, operating equipment and cables, inserting connectors to or removing connectors from signal ports connected to outdoor facilities, working at heights, and performing outdoor installation) in harsh weather conditions such as lightning, rain, snow, and level 6 or stronger wind.
- After installing the equipment, remove idle packing materials such as cartons, foam, plastics, and cable ties from the equipment area.
- In the case of a fire, immediately leave the building or the equipment area, and turn on the fire alarm bell or make an emergency call. Do not enter the building on fire in any case.
- Do not scrawl, damage, or block any warning label on the equipment.
- Tighten the screws to the specified torque using tools when installing the equipment.
- Understand the components and functioning of a grid-tied PV power system and relevant local standards.
- Repaint any paint scratches caused during equipment transportation or installation in a timely manner. Equipment with scratches cannot be exposed to an outdoor environment for a long period of time.
- Do not open the host panel of the equipment.

Personal Safety

- If there is a probability of personal injury or equipment damage during operations on the equipment, immediately stop the operations, report the case to the supervisor, and take feasible protective measures.
- Use tools correctly to avoid hurting people or damaging the equipment.
- Do not touch the energized equipment, as the enclosure is hot.

1.2 Personnel Requirements

- Personnel who plan to install or maintain equipment must receive thorough training, understand all necessary safety precautions, and be able to correctly perform all operations.
- Only qualified professionals or trained personnel are allowed to install, operate, and maintain the equipment.
- Only qualified professionals are allowed to remove safety facilities and inspect the equipment.
- Personnel who will operate the equipment, including operators, trained personnel, and professionals, should possess the local national required qualifications in special operations such as high-voltage operations, working at heights, and operations of special equipment.

• Only professionals or authorized personnel are allowed to replace the equipment or components (including software).

D NOTE

- Professionals: personnel who are trained or experienced in equipment operations and are clear of the sources and degree of various potential hazards in equipment installation, operation, and maintenance
- Trained personnel: personnel who are technically trained, have required experience, are aware of possible hazards on themselves in certain operations, and are able to take protective measures to minimize the hazards on themselves and other people
- Operators: operation personnel who may come in contact with the equipment, except trained personnel and professionals

1.3 Electrical Safety

Grounding

- For the equipment that needs to be grounded, install the ground cable first when installing the equipment and remove the ground cable last when removing the equipment.
- Do not damage the ground conductor.
- Do not operate the equipment in the absence of a properly installed ground conductor.
- Ensure that the equipment is connected permanently to the protective ground. Before operating the equipment, check its electrical connection to ensure that it is securely grounded.

General Requirements

🚹 DANGER

Before connecting cables, ensure that the equipment is intact. Otherwise, electric shocks or fire may occur.

- Ensure that all electrical connections comply with local electrical standards.
- Obtain approval from the local electric utility company before using the equipment in grid-tied mode.
- Ensure that the cables you prepared meet local regulations.
- Use dedicated insulated tools when performing high-voltage operations.

AC and DC Power

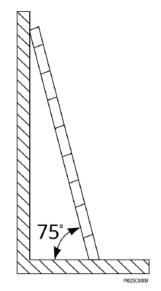
1 DANGER

Do not connect or disconnect power cables with power on. Transient contact between the core of the power cable and the conductor will generate electric arcs or sparks, which may cause fire or personal injury.

- Before making electrical connections, switch off the disconnector on the upstream device to cut off the power supply if people may contact energized components.
- Before connecting a power cable, check that the label on the power cable is correct.
- If the equipment has multiple inputs, disconnect all the inputs before operating the equipment.

Cabling

- When routing cables, ensure that a distance of at least 30 mm exists between the cables and heat-generating components or areas. This prevents damage to the insulation layer of the cables.
- Bind cables of the same type together. When routing cables of different types, ensure that they are at least 30 mm away from each other.
- Ensure that the cables used in a grid-tied PV power system are properly connected and insulated and meet specifications.


1.4 Installation Environment Requirements

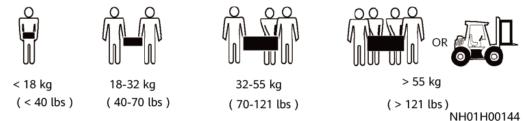
- Ensure that the equipment is installed in a well ventilated environment.
- To prevent fire due to high temperature, ensure that the ventilation vents or heat dissipation system are not blocked when the equipment is running.
- Do not expose the equipment to flammable or explosive gas or smoke. Do not perform any operation on the equipment in such environments.

1.5 Mechanical Safety

Using Ladders

- Use wooden or fiberglass ladders when you need to perform live working at heights.
- When a step ladder is used, ensure that the pull ropes are secured and the ladder is held firm.
- Before using a ladder, check that it is intact and confirm its load bearing capacity. Do not overload it.
- Ensure that the wider end of the ladder is at the bottom, or protective measures have been taken at the bottom to prevent the ladder from sliding.
- Ensure that the ladder is securely positioned. The recommended angle for a ladder against the floor is 75 degrees, as shown in the following figure. An angle rule can be used to measure the angle.

- When climbing a ladder, take the following precautions to reduce risks and ensure safety:
 - Keep your body steady.
 - Do not climb higher than the fourth rung of the ladder from the top.
 - Ensure that your body's center of gravity does not shift outside the legs of the ladder.


Drilling Holes

When drilling holes into a wall or floor, observe the following safety precautions:

- Wear goggles and protective gloves when drilling holes.
- When drilling holes, protect the equipment from shavings. After drilling, clean up any shavings that have accumulated inside or outside the equipment.

Moving Heavy Objects

• Be cautious to avoid injury when moving heavy objects.

• When moving the equipment by hand, wear protective gloves to prevent injuries.

1.6 Commissioning

When the equipment is powered on for the first time, ensure that professional personnel set parameters correctly. Incorrect settings may result in inconsistency with local certification and affect the normal operation of the equipment.

1.7 Maintenance and Replacement

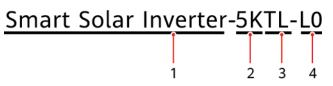
High voltage generated by the equipment during operation may cause an electric shock, which could result in death, serious injury, or serious property damage. Prior to maintenance, power off the equipment and strictly comply with the safety precautions in this document and relevant documents.

- Maintain the equipment with sufficient knowledge of this document and using proper tools and testing equipment.
- Before maintaining the equipment, power it off and follow the instructions on the delayed discharge label to ensure that the equipment is powered off.
- Place temporary warning signs or erect fences to prevent unauthorized access to the maintenance site.
- If the equipment is faulty, contact your dealer.
- The equipment can be powered on only after all faults are rectified. Failing to do so may escalate faults or damage the equipment.

2 Product Introduction

2.1 Overview

Function


The Smart Solar Inverter-(2KTL-6KTL)-L0 is a single-phase grid-tied string inverter that converts the DC power generated by PV strings into AC power and feeds the electricity into the power grid.

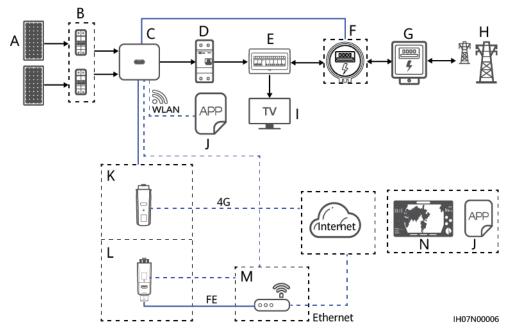
Model

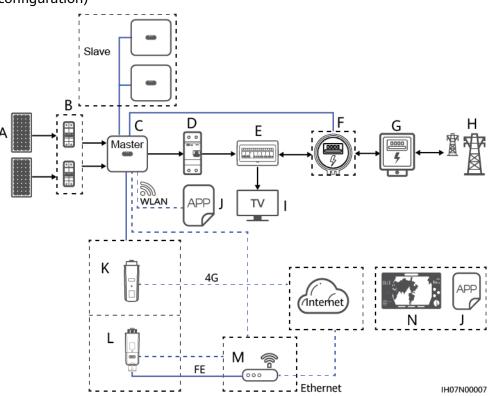
This document involves the following product models:

- Smart Solar Inverter-2KTL-L0
- Smart Solar Inverter-3KTL-L0
- Smart Solar Inverter-3.68KTL-L0
- Smart Solar Inverter-4KTL-L0
- Smart Solar Inverter-4.6KTL-L0
- Smart Solar Inverter-5KTL-L0
- Smart Solar Inverter-6KTL-L0

Figure 2-1 Model identifier (using Smart Solar Inverter-5KTL-L0 as an example)

Table 2-1 Identifier description


No.	Meaning	Value
1	Product family name	Inverter: grid-tied solar inverter


No.	Meaning	Value
2	Power level	• 2K: The power level is 2 kW.
		• 3K: The power level is 3 kW.
		• 3.68K: The power level is 3.68 kW.
		• 4K: The power level is 4 kW.
		• 4.6K: The power level is 4.6 kW.
		• 5K: The power level is 5 kW.
		• 6K: The power level is 6 kW.
3	Тороlоду	TL: transformerless
4	Design code	L0: residential

Networking Application

The inverter applies to residential rooftop grid-tied systems. The system consists of PV strings, grid-tied solar inverters, AC switches, and power distribution units (PDUs).

Figure 2-2 Single inverter scenario (dashed boxes indicate optional configuration)

Figure 2-3 Inverter cascading scenario (dashed boxes indicate optional configuration)

- indicates the power flow direction, indicates the signal line, and indicates the wireless communication.
- In the inverter cascading scenario, the master and slave solar inverters are both Smart Solar Inverter-(2KTL-6KTL)-L0, and a maximum of three inverters can be cascaded.
- In the inverter cascading scenario, only one smart power sensor (G in the figure) can be connected to the master inverter.
- In the inverter cascading scenario, the inverters connected to the power grid must meet the local power grid requirements.
- Smart PV Inverter-(2KTL-6KTL)-L0 cannot connect to the SmartLogger, energy storage systems, or optimizers.
- Smart PV Inverter-(2KTL-6KTL)-L0 does not support the off-grid mode.

(A) PV string	(B) DC switch	(C) Inverter
(D) AC switch	(E) Residential PDU	(F) Smart Power Sensor
(G) Residential power meter	(H) Power grid	(I) Household load
(J) FusionSolar app	(K) 4G Smart Dongle	(L) WLAN-FE Smart Dongle
(M) Router	(N) FusionSolar Smart PV Management System	

Supported Power Grid Types

The inverter supports the following power grid types: TN-S, TN-C, TN-C-S, and TT. In the TT power grid, the N-to-PE voltage must be less than 30 V.

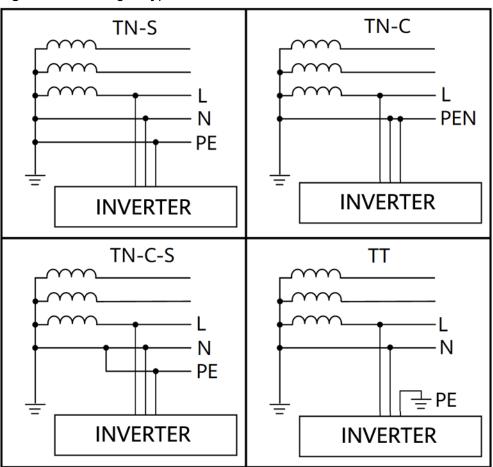
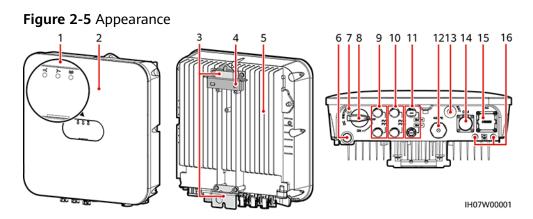



Figure 2-4 Power grid types

2.2 Component Description

Appearance

- (1) LED indicators
- (3) Hanging kit
- (5) Heat sink
- (7) DC switch locking screw hole^a
- (9) DC input terminals (PV1+/PV1-)
- (11) Reserved
- (13) Antenna port (ANT)
- (15) AC output port (AC)

- (2) Front panel
- (4) Mounting bracket
- (6) Ventilation valve
- (8) DC switch^b (DC SWITCH)
- (10) DC input terminals (PV2+/PV2-)
- (12) Smart Dongle port (4G/FE)
- (14) Communications port (COM)
- (16) Ground point

NOTE

- Note a: The DC switch locking screw is used to lock the DC switch to prevent accidental startup. It is delivered with the inverter.
- Note b: DC input terminals PV1 and PV2 are controlled by the DC switch.

2.3 Label Description

2.3.1 Enclosure Labels

Symbol	Name	Description
Danger: High Voltage! 高圧危险! Start maintaining the INVERTER at least 5 minutes after the INVERTER disconnects from all external power supplies. 逆空器与外部所有电源断开后,需要等待至少5分钟,才可以进行维护。	Delay discharge	Residual voltage exists after the inverter is powered off. It takes 5 minutes for the inverter to discharge to the safe voltage.
Warning: High Temperaturel高温危险! Never touch the enclosure of an operating INVERTER. 逆变器工作时严禁触摸外壳。	Burn warning	Do not touch a running inverter because it generates high temperatures on the shell.

Symbol	Name	Description
Danger. Electrical Hazardi有电危险! Only certified professionals are allowed to install and operate the INVERTER. 仅有资质的专业人员才可进行 逆变器的安装和操作。 High touch current, earth connection essential before connecting supply. 大接触电流! 接通电源前须先接地。	Electric shock warning	 High voltage exists after the inverter is powered on. Only qualified and trained electrical technicians are allowed to perform operations on the inverter. High touch current exists after the inverter is powered on. Before powering on the inverter, ensure that the inverter is properly grounded.
CAUTION Read instructions carefully before performing any operation on the INVERTER. 对逆变器进行任何操作前,请 仔细阅读说明书!	Refer to documentation	Reminds operators to refer to the documents delivered with the inverter.
	Grounding label	Indicates the position for connecting the PE cable.
Do not disconnect under load ! 禁止带负荷断开连接!	Operation warning	Do not remove the DC input connector or AC output connector when the inverter is running.
Konstantial before connection supply. 大接触电流 ! 接通电源前须先接地。	Grounding warning	Ground the nverter before powering it on.
(1P)PN/ITEM:XXXXXXX Y (32P)Model: XXXXXXXX (S)SN:XXXXXXXXXX MADE IN CHINA	Inverter serial number	Indicates the serial number.
MAC: x00000000000	Inverter MAC address	Indicates the MAC address.

Symbol	Name	Description
	Inverter Wi-Fi login QR code	Scan the QR code to connect to the Huawei inverter Wi-Fi network.

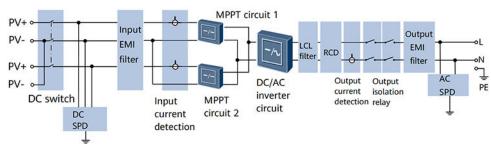
2.3.2 Product Nameplate

Figure 2-6 Nameplate (using Smart Solar Inverter-5KTL-L0 as an example)

- (2) Key technical parameters

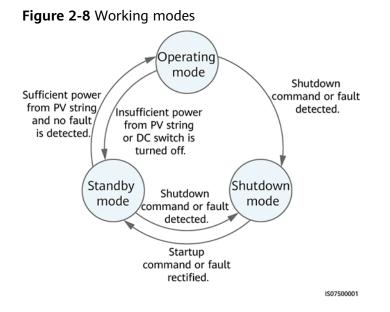
(4) Company name and country of origin

(3) Certification marks


The nameplate figure is for reference only.

2.4 Working Principles

Schematic Diagram


The inverter receives inputs from up to two PV strings. Then the inputs are grouped into two MPPT routes inside the inverter to track the maximum power

point of the PV strings. The DC power is then converted into single-phase AC power through an inverter circuit. Surge protection is supported on both the DC and AC sides.

Figure 2-7 Schematic diagram

Working Mode

Working mode	Description
Standby mode	The inverter enters Standby mode when the external environment does not meet the requirements for starting the inverter. In Standby mode:
	• The inverter continuously detects its operation status. Once the operating conditions are met, the inverter enters Operating mode.
	• If the inverter detects a shutdown command or a fault after startup, it enters Shutdown mode.

Working mode	Description
Operating mode	 In Operating mode: The inverter converts DC power from PV strings into AC power and feeds the power to the power grid. The inverter tracks the maximum power point to maximize the PV string output power. If the inverter detects a shutdown command or a fault, it enters Shutdown mode. If the inverter detects that the output power of PV strings does not meet the requirements for grid-tied power generation, it enters Standby mode.
Shutdown mode	 In Standby or Operating mode, if the inverter detects a shutdown command or a fault, it enters Shutdown mode. In Shutdown mode, if the inverter detects that the fault is rectified or the startup command is executed, the inverter enters Standby mode.

3 Inverter Storage

The following requirements should be met if the inverter is not put into use directly:

- Do not unpack the inverter.
- Keep the storage temperature at -40°C to +70°C and the humidity at 5%-95% RH.
- The product should be stored in a clean and dry place and be protected from dust and water vapor corrosion.
- A maximum of eight inverters can be stacked. To avoid personal injury or device damage, stack inverters with caution to prevent them from falling over.
- During the storage period, check the inverter periodically. (It is recommended that the check is performed every three months.) Replace the packing materials that are damaged by insects or rodents in a timely manner.
- If the inverter has been stored for more than two years, it must be checked and tested by professionals before being put into use.

4 System Installation

4.1 Checking Before the Installation

Checking Outer Packing

Before unpacking the inverter, check the outer packing for damage, such as holes and cracks, and check the inverter model. If any damage is found or the inverter model is not what you requested, do not unpack the package and contact your dealer as soon as possible.

NOTICE

You are advised to remove the packing materials within 24 hours before installing the inverter.

Checking Deliverables

After unpacking the inverter, check that the deliverables are intact and complete. If any item is missing or damaged, contact your dealer.

NOTE

For details about the number of accessories delivered with the inverter, see the *Packing List* in the packing case.

4.2 Preparing Tools and Instruments

Туре	Tools and Instruments		
Installation	Hammer drill (with a drill bit of 8 mm)	Torque socket wrench	E Torque wrench
	Diagonal pliers	Wire strippers	Torque screwdriver
	Rubber mallet	Utility knife	Cable cutter
	and in		2 00:00
	Crimping tool (model: PV- CZM-22100/19100)	Cord end terminal crimper	Disassembly and Assembly Tool (model: PV-MS-HZ open-end wrench)
	Cable tie	Vacuum cleaner	Multimeter (DC voltage measurement range ≥ 600 V DC)

Туре	Tools and Instruments			
	4		<u>AnD</u>	
	Marker	Steel measuring tape	Level	
	Hydraulic pliers	Heat-shrink tubing	Heat gun	
Personal protective equipment (PPE)				
	Safety gloves	Safety goggles	Dust mask	
	Carling Carling	-	-	
	Safety boots			

4.3 Determining the Installation Position

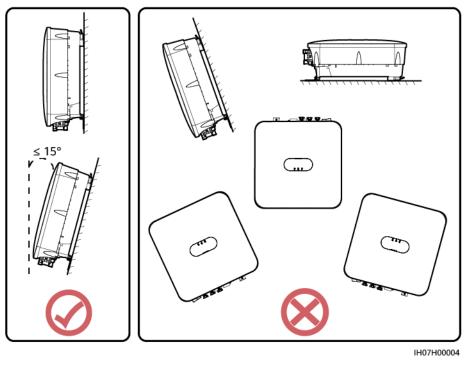
Basic Requirements

- The inverter is protected to IP65 and can be installed indoors or outdoors.
- Do not install the inverter in a place where personnel are easy to come into contact with its enclosure and heat sink, because these parts are extremely hot during operation.
- Do not install the inverter near flammable or explosive materials.
- Do not install the inverter at a place within children's reach.
- The inverter will be corroded in salt areas, and the salt corrosion may cause fire. Do not install the inverter outdoors in salt areas. A salt area refers to the region within 500 meters from the coast or prone to sea breeze. The regions prone to sea breeze vary with weather conditions (such as typhoons and monsoons) or terrains (such as dams and hills).

Installation Environment Requirements

- The inverter must be installed in a well-ventilated environment to ensure good heat dissipation.
- When the inverter is installed under direct sunlight, the power may be derated due to the temperature rise.
- You are advised to install the inverter in a sheltered place or install an awning over it.

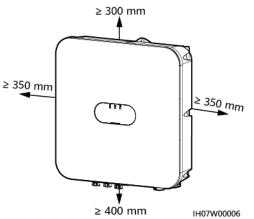
Mounting Structure Requirements


- The mounting structure where the inverter is installed must be fire resistant.
- Do not install the inverter on flammable building materials.
- Ensure that the installation surface is solid enough to bear the weight of the inverter.
- In residential areas, do not install the inverter on plaster board walls or walls made of similar materials with a weak sound insulation performance because the noise generated by the inverter may interfere with residents.

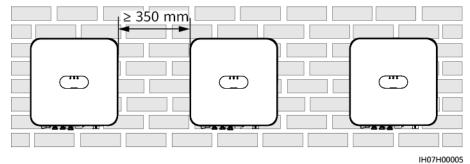
Installation Angle Requirements

The inverter can be wall-mounted or pole-mounted. The installation angle requirements are as follows:

- Install the inverter vertically or at a maximum back tilt of 15 degrees to facilitate heat dissipation.
- Do not install the inverter at forward tilted, excessive back tilted, side tilted, horizontal, or upside down positions.



Installation Space Requirements


• Reserve enough clearance around the inverter to ensure sufficient space for installation and heat dissipation.

• When installing multiple inverters, install them in horizontal mode if sufficient space is available and install them in triangle mode if no sufficient space is available. Stacked installation is not recommended.

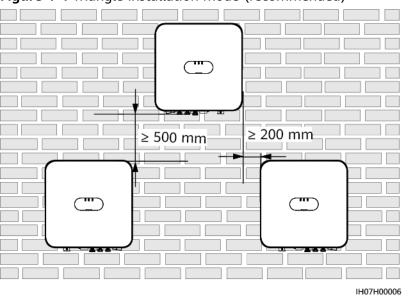
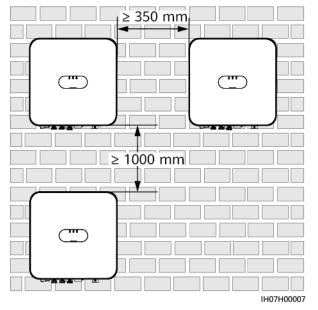



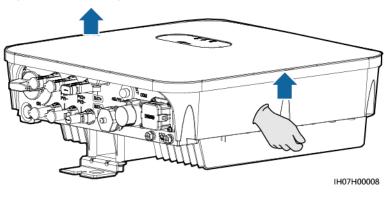
Figure 4-4 Triangle installation mode (recommended)

Figure 4-5 Stacked installation mode (not recommended)

NOTE

The installation figures are for reference only and are irrelevant to the inverter cascading scenario.

4.4 Moving an Inverter


Procedure

Step 1 Hold the handles on both sides of the inverter, lift the inverter from the packing case, and transport it to the installation position.

- Move the inverter with care to prevent device damage and personal injury.
- Do not use the wiring terminals and ports at the bottom to support any weight of the inverter.
- When you need to temporally place the inverter on the ground, use foam, paper, or other protection material to prevent damage to its enclosure.

Figure 4-6 Moving a inverter

----End

4.5 Installing a Inverter

Installation Precautions

Figure 4-7 shows the dimensions of mounting holes for the inverter.

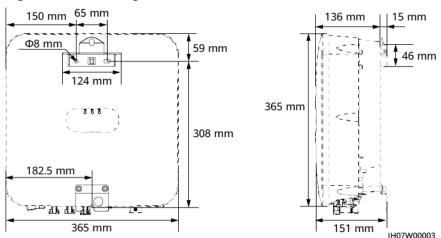
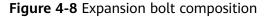
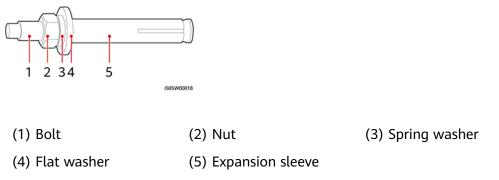


Figure 4-7 Mounting bracket dimensions

4.5.1 Wall-Mounted Installation

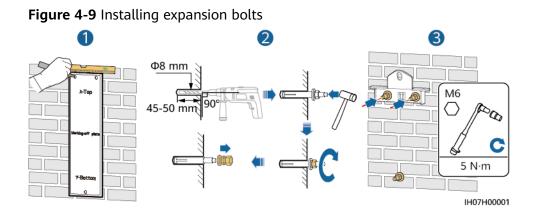
Procedure


- **Step 1** Determine the positions for drilling holes using the marking-off template. Level the positions of mounting holes using a level, and mark the positions with a marker.
- **Step 2** Secure the mounting bracket.



When drilling holes, avoid the water pipes and power cables buried in the wall.

NOTE


M6x60 expansion bolts are delivered with the inverter. If the length and amount of the bolts do not meet installation requirements, prepare M6 stainless steel expansion bolts by yourself.

NOTICE

- To prevent dust inhalation or contact with eyes, wear safety goggles and an anti-dust mask when drilling holes.
- Wipe away any dust in or around the holes and measure the hole distances. If the holes are inaccurately positioned, drill holes again.
- Level the head of the expansion sleeve with the concrete wall after removing the nut, spring washer, and flat washer. Otherwise, the mounting bracket will not be securely installed on the wall.
- Loosen the nut, spring washer, and flat washer of the expansion bolt at the bottom.

Step 3 (Optional) Install the locking screw for the DC switch.

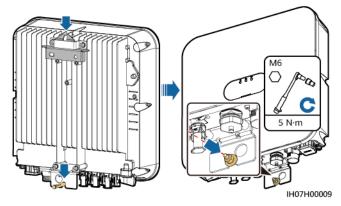
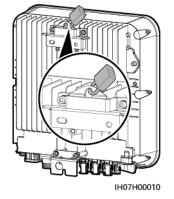



Figure 4-10 Installing a locking screw for the DC switch

- **Step 4** Install the inverter on the mounting bracket.
- **Step 5** Tighten the nuts.

Figure 4-11 Tightening nuts

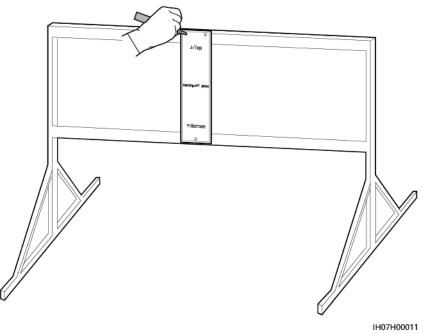


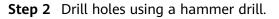
Step 6 (Optional) Install an anti-theft lock.

NOTICE

- Prepare an anti-theft lock suitable for the lock hole diameter (Φ10 mm).
- An outdoor waterproof lock is recommended.
- Keep the key to the anti-theft lock.

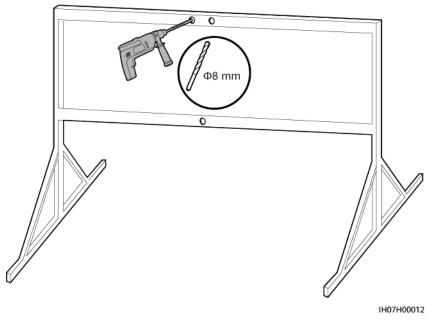
Figure 4-12 Installing an anti-theft lock

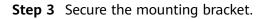

----End

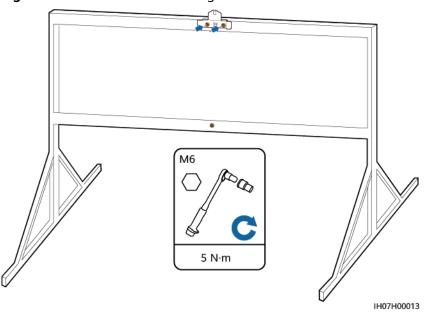

4.5.2 Support-Mounted Installation

Procedure

Step 1 Determine the positions for drilling holes using the marking-off template, and then mark the positions with a marker.






NOTE

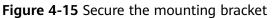

You are advised to apply anti-rust paint on the hole positions for protection.

Figure 4-14 Drilling holes

NOTE

Prepare bolt assemblies based on the hole diameter of the mounting bracket.

Step 4 (Optional) Install the locking screw for the DC switch.

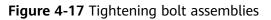
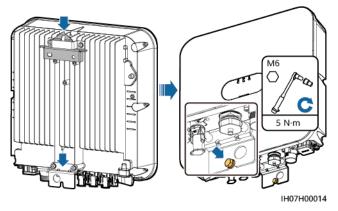
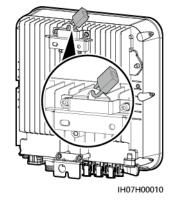




Figure 4-16 Installing a locking screw for the DC switch

- **Step 5** Install the inverter on the mounting bracket.
- **Step 6** Tighten the bolt assemblies.



Step 7 (Optional) Install an anti-theft lock.

NOTICE

- Prepare an anti-theft lock suitable for the lock hole diameter (Φ10 mm).
- An outdoor waterproof lock is recommended.
- Keep the key to the anti-theft lock.

Figure 4-18 Installing an anti-theft lock

----End

5 Electrical Connection

Precautions

A DANGER

Before connecting cables, ensure that the DC switch on the inverter and all the switches connecting to the inverter are set to OFF position. Otherwise, the high voltage of the inverter may result in electric shocks.

- The device damage caused by incorrect cable connections is not covered under any warranty.
- Only certified electricians are allowed to connect cables.
- Operation personnel must wear proper PPE when connecting cables.

NOTE

The cable colors shown in the electrical connection diagrams provided in this chapter are for reference only. Select cables in accordance with local cable specifications (green-and-yellow cables are only used for PE).

5.1 Preparing Cables

Figure 5-1 Inverter cable connections (dashed boxes indicate optional configuration)

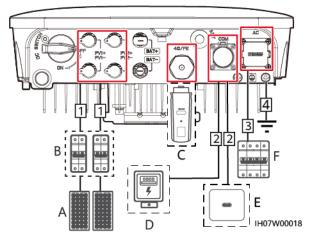


Table 5-1 Component description

No.	Component	Description	Source
A	PV string	The inverter supports the input from two PV strings.	Prepared by the customer
В	DC switch	Recommended: a DC circuit breaker with a rated voltage greater than or equal to 600 V DC and a rated current of 20 A	Prepared by the customer
С	Smart Dongle ^a	 Supported models: WLAN-FE Smart Dongle: SDongleA-05 4G Smart Dongle: SDongleA-03 	Purchased from manufacturer
D	Smart Power Sensor ^b	The inverter can connect to the DDSU666-H and DTSU666-H smart power sensors.	Purchased from Manufacturer

No.	Component	Description	Source
		The following third-party meters are also supported: GAVAZZI- EM340-DIN AV2 3 X S1 X08, GAVAZZI-EM111- DIN AV8 1 X S1 X08, GAVAZZI-EM112-DIN AV0 1 X S1 X08, CCS- WNC-3Y-400-MB, CCS- WNC-3D-240-MB, and Chint DDSU666.	Prepared by the customer
		The GAVAZZI three-phase meter has different power sampling methods. As a result, the power is incorrectly displayed on the NMS.	
E	Inverter	Select a proper model as required.	Purchased from manufacturer
F	AC switch	Recommended: a single- phase AC circuit breaker with a rated voltage greater than or equal to 250 V AC and a rated current of:	Prepared by the customer
		 16 A (Smart Solar Inverter-2KTL-L0) 	
		 25 A (Smart Solar Inverter-3KTL-L0 and Smart Solar Inverter-3.68KTL-L0) 	
		 32 A (Smart Solar Inverter-4KTL-L0, Smart Solar Inverter-4.6KTL-L0, Smart Solar Inverter-5KTL-L0, and Smart Solar inverter-6KTL-L0) 	

Table 5-2 Cable description

No.	Cable	Туре	Recommended Specifications	Source
1	DC input power cable	Common outdoor PV cable in the industry	 Conductor cross- sectional area: 4–6 mm² Cable outer diameter: 5.5–9 mm 	Prepared by the customer
2	(Optional) Signal cable	Outdoor shielded twisted pair cable	 Conductor cross-sectional area: Combined crimping of cables on the port: 0.20–0.35 mm² Crimping the cables on the port without combining them: 0.20–1 mm² Cable outer diameter: 4-hole rubber plug: 4–8 mm 2-hole rubber plug: 8–11 mm 	Prepared by the customer
3	AC output power cable ^a	 Not using the PE equipotential point at the AC output port: two-core (L and N) outdoor copper cable Using the PE equipotential point at the AC output port: three-core (L, N, and PE) outdoor copper cable 	 Conductor cross- sectional area: 4–6 mm² Cable outer diameter: 10–21 mm 	Prepared by the customer
4	PE cable	Single-core outdoor copper cable and M6 OT terminal	4–10 mm ²	Prepared by the customer
		um cross-sectional area of the AC fuse.	of the cable should be se	elected based

D NOTE

- The minimum cable diameter must comply with local cable standards.
- The factors that affect cable selection include the rated current, cable type, routing mode, ambient temperature, and maximum expected line loss.

5.2 Connecting PE Cables

Precautions

1 DANGER

- Ensure that the PE cable is securely connected. Otherwise, electric shocks may occur.
- Do not connect the neutral wire to the enclosure as a PE cable. Otherwise, electric shocks may occur.

D NOTE

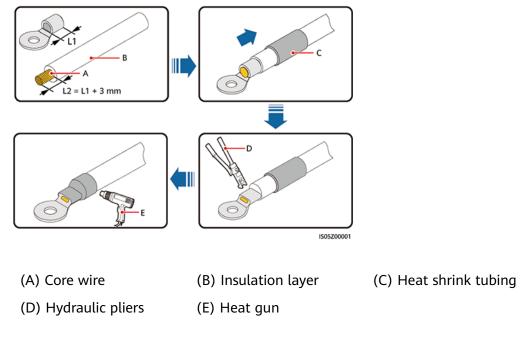
- The PE point at the AC output port is used only as a PE equipotential point, and cannot substitute for the PE point on the enclosure.
- It is recommended that silica gel or paint be used around the ground terminal after the PE cable is connected.

Additional Information

The inverter provides the grounding detection function. This function is used to check whether the inverter is properly grounded before the inverter starts, or check whether the ground cable is disconnected when the inverter is running. This function is only available under limited conditions. To ensure the safe operation of the inverter, properly ground the inverter according to the connection requirements of the ground cable. For some power grid types, if the output side of the inverter is connected to an isolation transformer, ensure that the inverter is properly grounded and set **Grounding inspection** to **Disable** to enable the inverter to run properly. If you are not sure whether the inverter is connected to such a type of power grid, contact your dealer.

- According to IEC 62109, to ensure the safe operation of the inverter in the case of ground cable damage or disconnection, properly connect the ground cable of the inverter and ensure that it meets at least one of the following requirements before the grounding detection function becomes invalid:
 - If the PE terminal is not connected to the AC connector, use a single-core outdoor copper cable with a conductor cross-sectional area of at least 10 mm² as the PE cable on the chassis.
 - Use cables with the same diameter as the AC output power cable and ground the PE terminal on the AC connector and the ground screws on the chassis.
- In some countries and regions, the inverter must have additional ground cables. Use cables with the same diameter as the AC output power cable and

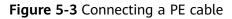
ground the PE terminal on the AC connector and the ground screws on the chassis.

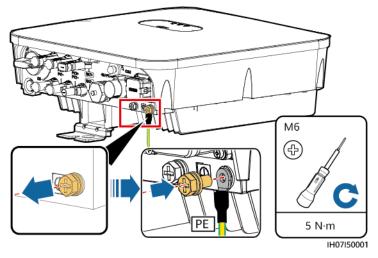

Procedure

Step 1 Crimp an OT terminal.

NOTICE

- Avoid scratching the core wire when stripping a cable.
- The cavity formed after the conductor crimp strip of the OT terminal is crimped must wrap the core wires completely. The core wires must contact the OT terminal closely.
- Wrap the wire crimping area with heat shrink tubing or insulation tape. The heat shrink tubing is used as an example.
- When using a heat gun, protect the equipment from being scorched.


Figure 5-2 Crimping an OT terminal



Step 2 Connect the PE cable.

NOTICE

- Ensure that the PE cable is connected securely.
- You are advised to use the right ground point and reserve the other ground point for future use.

----End

5.3 (Optional) Installing a Smart Dongle

Procedure

NOTE

- You are advised to install the Smart Dongle before installing the WLAN antenna.
- When installing the SIM card, determine its installation direction based on the silk screen and arrow on the card slot.
- Press the SIM card in place to lock it, indicating that the SIM card is correctly installed.
- When removing the SIM card, push it inwards to eject it.
- When reinstalling the cover of the Smart Dongle, ensure that the buckles spring back in place with a click sound.
- 4G Smart Dongle (4G Communication)

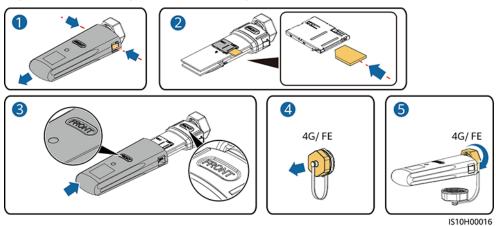
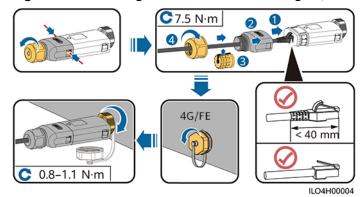



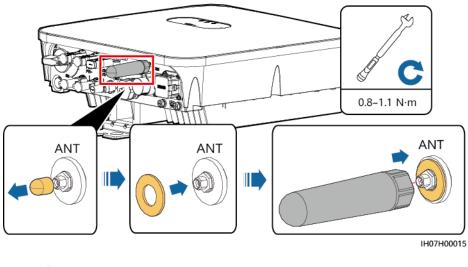
Figure 5-4 Installing a 4G Smart Dongle

• WLAN-FE Smart Dongle (FE Communication)

You are advised to use a CAT 5E outdoor shielded network cable (outer diameter < 9 mm; internal resistance \leq 1.5 ohms/10 m) and shielded RJ45 connectors.

Figure 5-5 Installing a WLAN-FE Smart Dongle (FE communication)

5.4 Installing a WLAN Antenna


Procedure

- **Step 1** Remove the watertight cap from the ANT port.
- **Step 2** Install the washer to the ANT port on the chassis.
- **Step 3** Install the WLAN antenna.

NOTICE

Ensure that the WLAN antenna is installed securely.

Figure 5-6 Installing a WLAN antenna

----End

5.5 Connecting an AC Output Power Cable

Precautions

An AC switch must be installed on the AC side of the inverter to ensure that the inverter can be safely disconnected from the power grid.

Do not connect loads between the inverter and the AC switch.

The inverter is integrated with a comprehensive residual current monitoring unit. Once detecting that the residual current exceeds the threshold, the inverter immediately disconnects itself from the power grid.

NOTICE

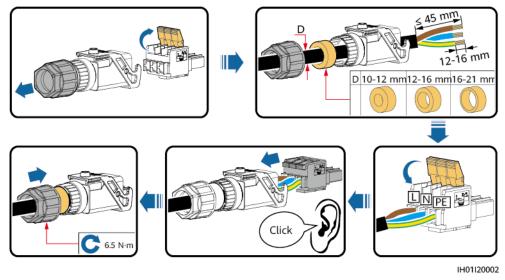
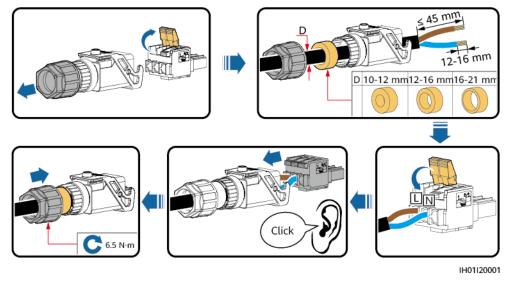
- If the external AC switch can perform earth leakage protection, the rated leakage action current should be greater than or equal to 100 mA.
- If multiple inverters connect to the general residual current device (RCD) through their respective external AC switches, the rated leakage action current of the general RCD should be greater than or equal to the number of inverters multiplied by 100 mA.
- A knife switch cannot be used as an AC switch.

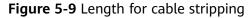
Procedure

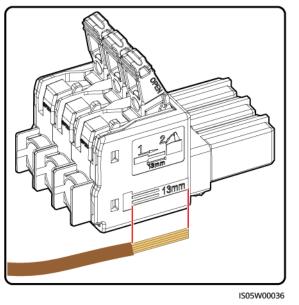
Step 1 Connect the AC output power cable to the AC connector.

NOTICE

- The PE point at the AC output port is used only as a PE equipotential point, and cannot substitute for the PE point on the enclosure.
- Keep the AC output power cable and the PE cable close to each other.
- Keep the AC output power cable and the DC input power cable close to each other.
- Ensure that the cable jacket is inside the connector.
- Ensure that the exposed core is totally inserted into the cable hole.
- Ensure that AC output cable is secured. Failing to do so may cause inverter malfunction or damage to its AC connector.
- Ensure that the cable is not twisted.

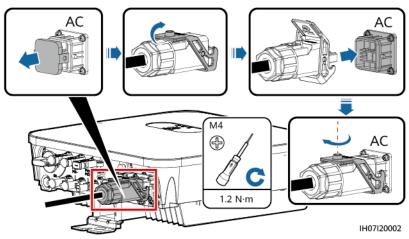




Figure 5-7 Assembling an AC connector (three-core wire)


Figure 5-8 Assembling an AC connector (two-core wire)

NOTE

- The cable colors shown in the figures are for reference only. Select an appropriate cable according to the local standards.
- For the core installation method and the length for cable stripping, see the instructions on the side of the plug insert.



Step 2 Connect the AC connector to the AC output port.

Ensure that the AC connector is connected securely.

Figure 5-10 Securing an AC connector

Step 3 Check the route of the AC output power cable.

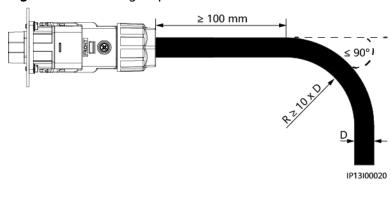


Figure 5-11 Cabling requirements

----End

Follow-up Procedure

Before removing the AC connector, ensure that the DC switch at the bottom of the inverter and all the switches connected to the inverter are OFF.

To remove the AC connector from the inverter, perform the operations in reverse order.

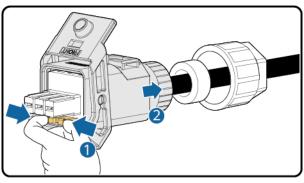


Figure 5-12 Removing a plug insert

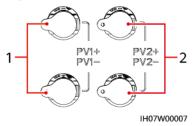
IS05H00031

5.6 Connecting DC Input Power Cables

Precautions

DANGER

- Before connecting the DC input power cables, ensure that the DC voltage is within the safe range (lower than 60 V DC) and that the DC switch on the inverter is OFF. Failing to do so may result in electric shocks.
- When the inverter is running, it is not allowed to work on the DC input power cables, such as connecting or disconnecting a PV string or a PV module in a PV string. Failing to do so may cause electric shocks.
- If no PV string connects to a DC input terminal of the inverter, do not remove the watertight cap from the DC input terminals. Otherwise, the IP rating of the inverter will be affected.


Ensure that the following conditions are met. Otherwise, the inverter may be damaged, or even a fire could happen.

- The DC input voltage of the inverter shall not exceed maximum input voltage under any circumstance.
- The polarities of electric connections are correct on the DC input side. The positive and negative terminals of a PV string connect to corresponding positive and negative DC input terminals of the inverter.
- If the DC input power cables are reversely connected, do not operate the DC switch as well as positive and negative connectors immediately. Wait until the night when solar irradiance declines and the PV string current drops to below 0.5 A. Then set the DC switch to the OFF position, remove the positive and negative connectors, and correct the polarities of the DC input power cables.

NOTICE

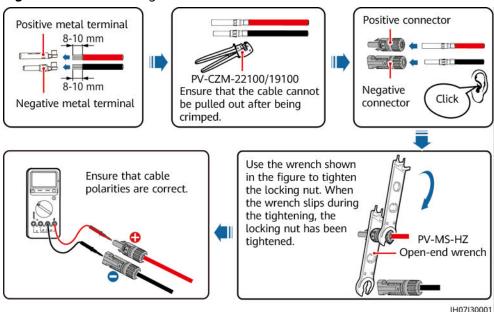
- Since the output of the PV string connected to the inverter cannot be grounded, ensure that the PV module output is well insulated to ground.
- During the installation of PV strings and the inverter, the positive or negative terminals of PV strings may be short-circuited to ground if the power cable is not properly installed or routed. In this case, an AC or DC short circuit may occur and damage the inverter. The caused device damage is not covered under any warranty or service agreement.

Figure 5-13 DC input terminals

(1) Terminals of DC input 1

(2) Terminals of DC input 2

Procedure


Step 1 Assemble a DC connector.

Use the Staubli MC4 positive and negative metal terminals and DC connectors delivered with the inverter. Using incompatible positive and negative metal terminals and DC connectors may result in serious consequences. The caused device damage is not covered under any warranty or service agreement.

NOTICE

- Keep the DC input PV+ cable and PV- cable close to each other.
- Cables with high rigidity, such as armored cables, are not recommended as DC input power cables, because poor contact may be caused by the bending of the cables.
- Before assembling DC connectors, label the cable polarities correctly to ensure correct cable connections.
- After crimping the positive and negative metal terminals, pull the DC input power cables back to ensure that they are connected securely.
- Insert the crimped metal terminals of the positive and negative power cables into the appropriate positive and negative connectors. Then pull back the DC input power cables to ensure that they are connected securely.

Figure 5-14 Assembling a DC connector

NOTE

Use a multimeter to measure the voltage at the DC position. The multimeter must have a DC voltage range of at least 600 V. If the voltage is a negative value, the DC input polarity is incorrect and needs correction. If the voltage is greater than 600 V, too many PV modules are configured to the same string. Remove some PV modules.

Before performing **Step 2**, ensure that the DC switch is set to OFF.

Step 2 Insert the positive and negative connectors into corresponding DC input terminals on the inverter.

NOTICE

After the positive and negative connectors snap into place, pull the DC input power cables back to ensure that they are connected securely.

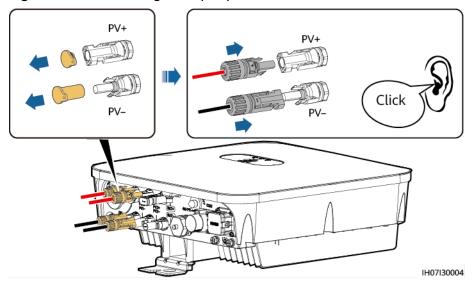


Figure 5-15 Connecting DC input power cables

NOTICE

If the DC input power cable is reversely connected and the DC switch is set to ON, do not immediately turn off the DC switch or reconnect the positive and negative connectors. Otherwise, the device may be damaged. The caused device damage is not covered under any warranty or service agreement. Wait until the night when solar irradiance declines and the PV string current drops to below 0.5 A. Then set the DC switch to the OFF position, remove the positive and negative connectors, and correct the polarities of the DC input power cables.

----End

Follow-up Procedure

Before removing the positive and negative connectors, ensure that the DC switch is OFF.

To remove the positive and negative connectors from the inverter, insert a disassembly tool into the notch and press the tool with an appropriate force.

Figure 5-16 Removing a DC connector

IH07H00019

5.7 (Optional) Connecting Signal Cables

Context

NOTICE

When laying out signal cables, separate them from power cables and keep them away from strong interference sources to prevent communication interruption.

Figure 5-17 Signal cable ports

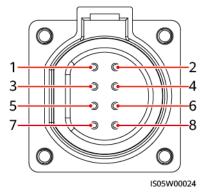
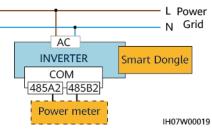
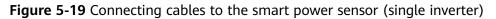
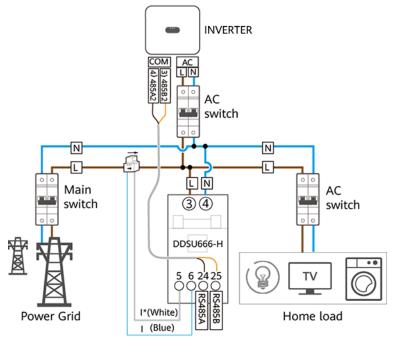


Table 5-3 COM port definition

No.	Label	Definition	Single Inverter Scenario	Inverter Cascading Scenario	
1	485B1	RS485B, RS485 differential signal–	N/A	Used for connecting to the solar inverters.	
2	485A1	RS485A, RS485 differential signal+			
3	485B2	RS485B, RS485 differential signal–	Connects to the RS485 signal port on the power	Connects to the RS485 signal port on the power collector.	
4	485A2	RS485A, RS485 differential signal+	collector.		
5	GND	GND of the DI1/DI2	Used for connecting to GND of the DI1/DI2.		
6	N/A	N/A	N/A		
7	DI1	Digital input signal 1+	Used for connecting to the DI1 positive signal. It can be used for connecting to the DRM0 scheduling signal port.		
8	DI2	Digital input signal 2+	Reserved port		

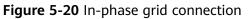

Communication Networking Mode

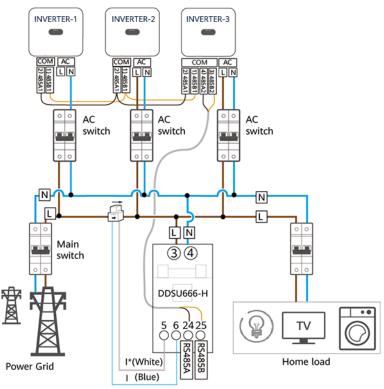

NOTE


The smart power sensor and Smart Dongle must be connected to the same inverter.

• Single inverter scenarios

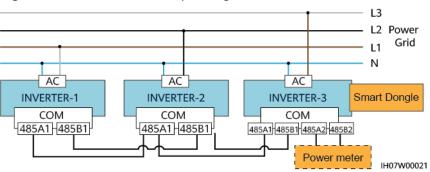
Figure 5-18 Single inverter





• Inverter cascading scenarios

- In-phase grid connection



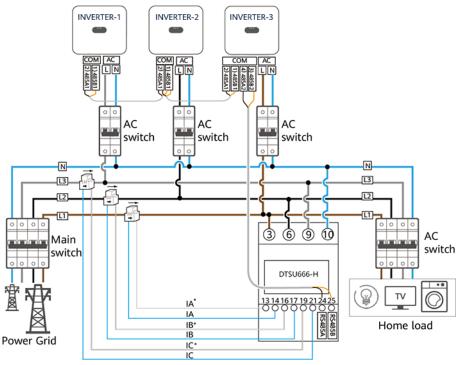
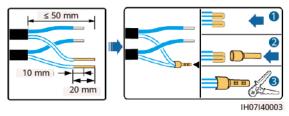


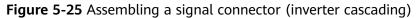
Figure 5-21 Connecting cables to the smart power sensor (in-phase grid connection)

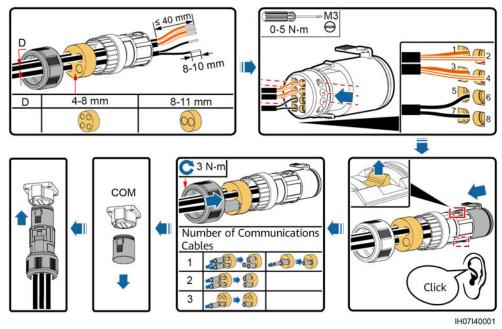
- Balanced three-phase grid connection

Figure 5-23 Connecting cables to the smart power sensor (balanced three-phase grid connection)

- In cascading scenarios, the inverters are required to connect to the management system through a Smart Dongle.
- In the preceding networking, the inverters are cascaded and support the grid-tied point control function to achieve zero export.
- If the inverters requires the grid-tied point control function, they need to be connected to a smart power sensor.
- In the scenario of balanced three-phase grid connection, if the inverters requires the grid-tied point control function, they need to be connected to a three-phase smart power sensor to control the total three-phase power.
- For Australia and New Zealand markets, Inverters should not be installed in multiple phase combinations.

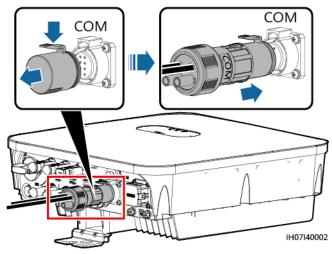

Procedure


Step 1 Connect signal cables to corresponding signal connectors.


NOTICE

- Ensure that the protection layer of the cable is in the connector. The surplus core should be cut off from the protection layer.
- Ensure that the exposed core is totally inserted into the cable hole.
- Ensure that the signal cables are connected securely.
- Ensure that the cables are not twisted.
- If multiple signal cables need to be connected to a single connector, ensure that the outer diameters of the signal cables are the same.

Figure 5-24 Crimping two signal cables



Step 2 Connect the signal connector to the corresponding port.

NOTICE

Ensure that the signal connector is connected securely.

Figure 5-26 Securing a signal connector

----End

6 System Commissioning

6.1 Verification Before Power-On

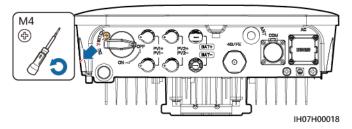
No.	Check Item	Acceptance Criteria
1	Inverter	The inverter is installed correctly and securely.
2	WLAN antenna	The WLAN antenna is installed correctly and securely.
3	Cables routing	Cables are routed properly as required by the customer.
4	Cable tie	Cable ties are evenly distributed and no burr exists.
5	Grounding	The PE cable is connected correctly, securely, and reliably.
6	Switch	The DC switch and all the switches connecting to the inverter are OFF.
7	Cable connection	The AC output power cable, DC input power cable, and signal cable are connected correctly, securely, and reliably.
8	Unused terminal and port	Unused terminals and ports are locked by watertight caps.
9	Installation environment	The installation space is proper, and the installation environment is clean and tidy.

Table 6-1 Check items and acceptance criteria

6.2 System Power-On

Prerequisites

Before turning on the AC switch between the inverter and the power grid, use a multimeter to check that the AC voltage is within the allowed range.


NOTICE

If the DC power supply is connected but the AC power supply is disconnected, the inverter will report a **Grid Loss** alarm. The inverter can start properly only after the power grid recovers.

Procedure

- **Step 1** Turn on the AC switch between the inverter and the power grid.
- **Step 2** (Optional) Remove the locking screw from the DC switch.

Figure 6-1 Removing the locking screw from a DC switch

- Step 3 Turn on the DC switch between the PV string and the inverter if there is any.
- **Step 4** Turn on the DC switch at the bottom of the inverter.
- **Step 5** Observe the LEDs to check the inverter operating status.

Table	6-2	LED	indicators	1
-------	-----	-----	------------	---

Category	Status		Description
Running indicator	LED1	LED2	-
=[]~ (m)	Steady green	Steady green	The inverter is operating in grid-tied mode.
	Blinking green at long intervals (on for 1s and then off for 1s)	Off	The DC is on and the AC is off.

Category Status			Description
	Blinking green at long intervals (on for 1s and then off for 1s)	Blinking green at long intervals (on for 1s and then off for 1s)	Both the DC and AC are on, and the inverter is not exporting power to the power grid.
	Off	Blinking green at long intervals (on for 1s and then off for 1s)	The DC is off and the AC is on.
	Off	Off	Both the DC and AC are off.
	Blinking red at short intervals (on for 0.2s and then off for 0.2s)	_	There is a DC environmental alarm, such as an alarm indicating that High String Input Voltage, String Reverse Connection, or Low Insulation Resistance.
	_	Blinking red at short intervals (on for 0.2s and then off for 0.2s)	There is an AC environmental alarm, such as an alarm indicating Grid Undervoltage, Grid Overvoltage, Grid Overfrequency, or Grid Underfrequency.
	Steady red	Steady red	Fault.
Communication	LED3		-
indicator ≡[]~ (m) ○ ○ ○	Blinking green at short in then off for 0.2s)	Communication is in progress.	
LED3	Blinking green at long in then off for 1s)	The mobile phone is connected to the inverter.	
	Off	There is no communication.	

Table 6-3 LED indicators 2

Category	Status		Description	
Device replacement indication	LED1	LED2	LED3	-

Category	Status			Description
	Steady red	Steady red	Steady red	The inverter hardware is faulty. The inverter needs to be replaced.

----End

7 Man-Machine Interaction

7.1 App Commissioning

7.1.1 Downloading the FusionSolar App

• Method 1: Access https://solar.huawei.com using the mobile phone browser and download the latest installation package.

Figure 7-1 Download Mode

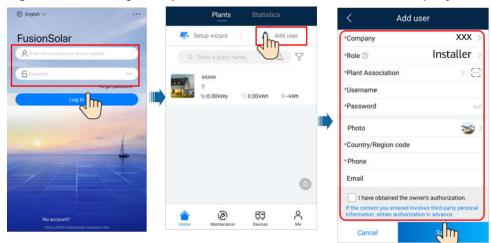
- Method 2: Search for FusionSolar on Huawei AppGallery and download the latest installation package.
- Method 3: Scan the following QR code and download the latest installation package.

Figure 7-2 QR code

7.1.2 (Optional) Registering an Installer Account

NOTE

- If you have an installer account, skip this step.
- You can register an account only using a mobile phone only in China.
- The mobile number or email address used for registration is the user name for logging in to the FusionSolar app.


Create the first installer account and create a domain named after the company name.

	< Select role	< Installer registration
FusionSolar A the uservene of phane number	I'm an owner Real-time monitoring of plant operation	Note: If your company has registered an account in the system, you do not need to register again. Ask, your administrator to add you to the user list.
E Password Ave	Ask your installer to create an account for you.	Company name
Log In	I'm installer	Mobile number
	Tap Cate your account	Username
4		Enter the verification code. Send
		Password 3rd
		Confirm password
No scount?		I have read and agree to Terms of Use and Privacy Policy
tunionselar.hzawei.com		Rahm

Figure 7-3 Creating the first installer account

NOTICE

To create multiple installer accounts for a company, log in to the FusionSolar app and tap **New User** to create an installer account.

Figure 7-4 Creating multiple installer accounts for the same company

7.1.3 Creating a PV Plant and a User

rigule 7-5 Cleatin	iy a i v	plant		usci	
\odot English \sim			Plants		
FusionSolar		👫 Se		2.	Aluser
REnter the username or phone number		QE	ant nan	ne.	U ₇
6 Password	-		XXXXX		
Log In		IN A DISTRICT	⊙ ₩0.00kWp	0.00kWh	
C					
	-				
	*				
	-				0
					0
No account?		Home	Maintenance	Devices	°.

Figure 7-5 Creating a PV plant and a user

7.2 Parameters Settings

Go to the **Device Commissioning** screen and set inverter parameters. For details about entering the **Device Commissioning** screen, see **B Device Commissioning**.

7.2.1 Energy Control

On the home screen, tap **Power adjustment** to perform the corresponding operation.

Figure 7-6 Energy control

<	Power adjustment	
Active power co	ntrol	>
Reactive power	control	>
Grid-tied point c	ontrol	>

7.2.1.1 Grid-tied Point Control

Function

Limits or reduces the output power of the PV power system to ensure that the output power is within the power deviation limit.

Procedure

Step 1 On the home screen, choose Power adjustment > Grid-tied point control.

Figure 7-7 Grid-tied point control

<	Grid-tied point cont	rol
Active	power	>
Peactiv	e power	>

Table 7-1 Grid-tied point control

Parameter Name		Description	
Active power	Unlimited	-	If this parameter is set to Unlimited , the output power of the inverter is not limited and the inverter can connect to the power grid at the rated power.
	Grid connection with zero power	Closed-loop controller	 If multiple inverters are cascaded, set this parameter to SDongle. If there is only one inverter, set this parameter to Inverter.
		Limitation mode	Total power indicates export limitation of the total power at the grid-tied point.
		Power adjustment period	Specifies the shortest interval for a single anti-backfeeding adjustment.
		Power control hysteresis	Specifies the dead zone for adjusting the inverter output power. If the power fluctuation is within the power control hysteresis, the power is not adjusted.
		Active power output limit for fail-safe	Specifies the derating value of the inverter active power by percentage. If the Smart Dongle does not detect any meter data or the communication between the Smart Dongle and the inverter is disconnected, the Smart Dongle delivers the derating value of the inverter active power by percentage.

Parameter Name		Description	
		Communication disconnection fail-safe	In the inverter anti-backfeeding scenario, if this parameter is set to Enable , the inverter will derate according to the active power derating percentage when the communication between the inverter and the Smart Dongle is disconnected for a period longer than Communication disconnection detection time .
		Communication disconnection detection time	Specifies the time for determining the communication disconnection between the inverter and the Dongle. This parameter is displayed when Communication disconnection fail- safe is set to Enable .
	Grid connection with limited power (kW)	Closed-loop controller	 If multiple Smart Solar Inverters are cascaded, set this parameter to SDongle. If there is only one Smart Solar Inverter, set this parameter to Inverter.
		Limitation mode	Total power indicates export limitation of the total power at the grid-tied point.
		Maximum grid feed-in power	Specifies the maximum active power transmitted from the grid-tied point to the power grid.
		Power adjustment period	Specifies the shortest interval for a single anti-backfeeding adjustment.
		Power control hysteresis	Specifies the dead zone for adjusting the inverter output power. If the power fluctuation is within the power control hysteresis, the power is not adjusted.
		Active power output limit for fail-safe	Specifies the derating value of the inverter active power by percentage. If the Smart Dongle does not detect any meter data or the communication between the Smart Dongle and the inverter is disconnected, the Smart Dongle delivers the derating value of the inverter active power by percentage.

Parameter Name	arameter Name		Description
		Communication disconnection fail-safe	In the inverter anti-backfeeding scenario, if this parameter is set to Enable , the inverter will derate according to the active power derating percentage when the communication between the inverter and the Smart Dongle is disconnected for a period longer than Communication disconnection detection time .
		Communication disconnection detection time	Specifies the time for determining the communication disconnection between the inverter and the Dongle. This parameter is displayed when Communication disconnection fail- safe is set to Enable .
	connection limited power	Closed-loop controller	 If multiple inverters are cascaded, set this parameter to SDongle. If there is only one inverter, set this parameter to Inverter.
		Limitation mode	Total power indicates export limitation of the total power at the grid-tied point.
		PV plant capacity	Specifies the total maximum active power in the inverter cascading scenario.
		Maximum grid feed-in power	Specifies the percentage of the maximum active power of the grid-tied point to the PV plant capacity.
		Power adjustment period	Specifies the shortest interval for a single anti-backfeeding adjustment.
		Power control hysteresis	Specifies the dead zone for adjusting the inverter output power. If the power fluctuation is within the power control hysteresis, the power is not adjusted.

Parameter Name		Description
	Active power output limit for fail-safe	Specifies the derating value of the inverter active power by percentage. If the Smart Dongle does not detect any meter data or the communication between the Smart Dongle and the inverter is disconnected, the Smart Dongle delivers the derating value of the inverter active power by percentage.
	Communication disconnection fail-safe	In the inverter anti-backfeeding scenario, if this parameter is set to Enable , the inverter will derate according to the active power derating percentage when the communication between the inverter and the Smart Dongle is disconnected for a period longer than Communication disconnection detection time .
	Communication disconnection detection time	Specifies the time for determining the communication disconnection between the inverter and the Dongle. This parameter is displayed when Communication disconnection fail- safe is set to Enable .

----End

7.2.2 AFCI

Function

If PV modules or cables are not properly connected or damaged, electric arcs may occur, which may cause fire. Inverters provide unique arc detection in compliance with UL 1699B-2018 to ensure the safety of users' lives and property.

This function is disabled by default, to enable this function, log in to the FusionSolar app, enter the **Device Commissioning** screen, choose **Settings** > **Feature parameters**, and enable **AFCI**.

Clearing Alarms

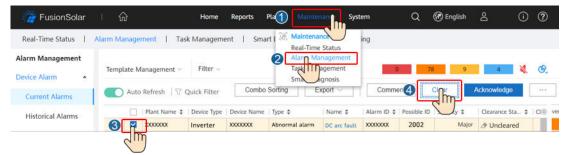
The AFCI function involves the **DC arc fault** alarm.

The Inverter has the AFCI alarm automatic clearance mechanism. If an alarm is triggered for less than five times within 24 hours, the Inverter automatically clears the alarm. If the alarm is triggered for five times or more within 24 hours, the Inverter locks for protection. You need to manually clear the alarm on the Inverter so that it can work properly.

You can manually clear the alarm as follows:

• Method 1: FusionSolar App

Log in to the FusionSolar app and choose **My** > **Device Commissioning**. On the **Device Commissioning** screen, connect and log in to the Inverter that generates the AFCI alarm, tap **Alarm management**, and tap **Clear** on the right of the **DC arc fault** alarm to clear the alarm.


Figure 7-8 Alarm management	Figure	7-8	Alarm	management
-----------------------------	--------	-----	-------	------------

<	Active alarm	Historical alarm
	All -	Sort by generated time
Alarr	n list: 1	
0	DC arc fault	>
	The PV string power cab contact.	le arcs or is in poor
	14-Nov-2020 18:09:43	Clear

• Method 2: FusionSolar Smart PV Management System

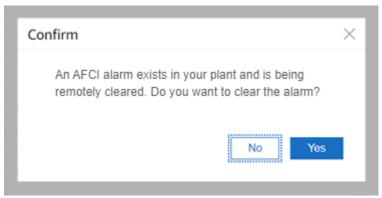

Log in to the FusionSolar Smart PV Management System using a non-owner account, choose **Management** > **Alarm Management**, select the **DC arc fault** alarm, and click **Clear** to clear the alarm.

Figure 7-9 Clearing alarms

Switch to the owner account with PV plant management rights. On the home page, click the PV plant name to go to the PV plant page, and click **OK** as prompted to clear the alarm.

Figure 7-10 Owner confirmation

7.2.3 IPS Check (for Italy CEI0-21 Grid Code Only)

Function

The Italy CEI0-21 grid code requires an IPS check for the Inverter. During the selfcheck, the Inverter checks the protection threshold and protection time of the maximum voltage over 10 min (59.S1), maximum overvoltage (59.S2), minimum undervoltage (27.S1), minimum undervoltage (27.S2), maximum overfrequency (81.S1), maximum overfrequency (81.S2), minimum underfrequency (81.S), and minimum underfrequency (81.S2).

Procedure

- **Step 1** On the home screen, choose **Maintenance** > **IPS test** to access the IPS test screen.
- Step 2 Tap Start to start an IPS test. The Inverter detects maximum voltage over 10 min (59.S1), maximum overvoltage (59.S2), minimum undervoltage (27.S1), minimum undervoltage (27.S2), maximum overfrequency (81.S1), maximum overfrequency (81.S2), and minimum underfrequency (81.S1), and minimum underfrequency (81.S2).

Figure 7-11 IPS test

< Maintenance		< Interface Protection	rical report
+ Add/Delete device	>	SN 210107534702012	20126 🔘
Physical layout design of PV modules	>	IPS state	NA
(1) Upgrade device	>	💿 🔍 🔍 🔍 🗊	EE
D Log management	>	Maximum voltage over 10 min (5	i9.S1)
(iii) Performance data	>	Trip value setting	NA
Interface Protection System self-test	>	Trip time setting	NA
Inverter ON/OFF Status Grid cont		Measurement value	NA
Restore defaults	Hected	Measurement trip time	NA
Clear alarms		Self-check status	NA
(f) Clear historical energy yield			
Adjust total energy yield			
C Reset		Stort	

Table 7-2 IPS test type

IPS Test Type	Description
Maximum voltage over 10 min (59.S1)	The default maximum voltage over 10 min protection threshold is 253 V (1.10 Vn), and the default protection time threshold is 3s.
Maximum overvoltage (59.S2)	The default overvoltage protection threshold is 264.5 V (1.15 Vn), and the default protection time threshold is 0.2s.
Minimum undervoltage (27.S1)	The default undervoltage protection threshold is 195.5 V (0.85 Vn), and the default protection time threshold is 1.5s.
Minimum undervoltage (27.S2)	The default undervoltage protection threshold is 34.5 V (0.15 Vn), and the default protection time threshold is 0.2s.
Maximum overfrequency (81.S1)	The default overfrequency protection threshold is 50.2 Hz, and the default protection time threshold is 0.1s.
Maximum overfrequency (81.S2)	The default overfrequency protection threshold is 51.5 Hz, and the default protection time threshold is 0.1s.
Minimum underfrequency (81.S1)	The default underfrequency protection threshold is 49.8 Hz, and the default protection time threshold is 0.1s.

IPS Test Type	Description
Minimum underfrequency (81.S2)	The default underfrequency protection threshold is 47.5 Hz, and the default protection time threshold is 0.1s.

Step 3 After the IPS test is complete, **IPS State** is displayed as **IPS state success**. Tap **Historical report** in the upper right corner of the screen to view the IPS check report.

----End

7.2.4 DRM (Australia AS4777)

Function

According to Australia AS 4777.2-2015, solar inverters need to support the function of demand response mode (DRM), and DRM0 is a mandatory requirement.

This function is disabled by default.

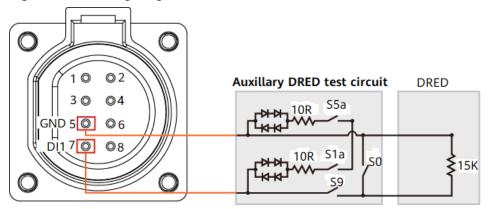


Figure 7-12 Wiring diagram for the DRM function

NOTE

The demand response enabling device (DRED) is a power grid dispatch device.

Table 7-3 DRM	requirements
---------------	--------------

Mode	Port on the inverter	Requirements
DRM0	Dl1 and GND of the COM port	• When switches S0 and S9 are switched on, the solar inverter should be turned off.
		 When switch S0 is switched off, and switch S9 is switched on, the solar inverter should be grid-tied.

Procedure

- **Step 1** On the home page, choose **Settings** > **Feature parameters**.
- Step 2 Set DRM to .

Figure 7-13 DRM

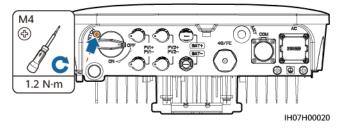
< Settings		Feature parameters	
(B) Grid parameters	>	Soft start/boot time	>
Protection parameters	1>	AFCI	
() Feature parameters	>	Soft start time after grid failure	>
Power adjustment	>	Night-time hibernation	
🕞 Time setting	>	Delay upgrade	
1 Communication configuration	>	Duration for determining short-time grid disconnection	>
		TCP heartbeat interval	>
		TCP frame length	>
		Heartbeat period at application layer	2
		DRM	

----End

8 System Maintenance

8.1 System Power-Off

Precautions



After the inverter powers off, the remaining electricity and heat may still cause electric shocks and body burns. Therefore, put on protective gloves and begin operating the inverter five minutes after the power-off.

Procedure

- **Step 1** Send a shutdown command on the app.
- **Step 2** Turn off the AC switch between the inverter and the power grid.
- **Step 3** Turn off the DC switch at the bottom of the inverter.
- **Step 4** (Optional) Install the locking screw for the DC switch.

Figure 8-1 Installing a locking screw for the DC switch

8.2 Routine Maintenance

To ensure that the inverter can operate properly for a long term, you are advised to perform routine maintenance on it as described in this chapter.

Before cleaning the inverter, connecting cables, and maintaining the grounding reliability, power off the inverter (see **8.1 System Power-Off** for details).

Check Item	Check Method	Maintenance Interval
System cleanliness	Check periodically that the heat sinks are free from obstacles and dust.	Once every 6 to 12 months
System running status	 Check that the inverter is not damaged or deformed. Check that the inverter operates with no abnormal sound. Check that all inverter parameters are correctly set during operation. 	Once every six months
Electrical connection	 Check that cables are secured. Check that cables are intact, and that in particular, the parts touching the metallic surface are not scratched. Check that unused DC input terminals, COM ports, ANT ports, and Smart Dongle waterproof covers are locked. 	The first inspection is 6 months after the initial commissioning. From then on, the interval can be 6 to 12 months.
Grounding reliability	Check that ground cables are securely connected.	The first inspection is 6 months after the initial commissioning. From then on, the interval can be 6 to 12 months.

Table 8-1 Maintenance checklist

8.3 Troubleshooting

Alarm severities are defined as follows:

- Major: The inverter enters the shutdown mode or functions abnormally after a fault occurs.
- Minor: Some components are faulty but the inverter can still connect to the power grid and generate power.
- Warning: The inverter functions normally, but its output power decreases due to external factors.

Alarm ID	Alarm Name	Alarm Severity	Possible Causes	Troubleshooting
2001	High String Input Voltage	Major	 The PV array is not properly configured. Excessive PV modules are connected in series to the PV string, and therefore the open-circuit voltage exceeds the maximum inverter operating voltage. Cause ID = 1, 2 1: The PV1 input voltage is high. 2: The PV2 input voltage is high. 	Check the serial connection configuration of the PV string and ensure that the PV string open-circuit voltage is not greater than the maximum operating voltage of the inverter. After the PV array configuration is corrected, the alarm disappears.
2002	DC Arc Fault	Major	The PV string power cables arc or are in poor contact. Cause ID 1 = PV1 and PV2 Cause ID 2 = PV3 and PV4	Check whether the string cables arc or are in poor contact.
2003	DC Arc Fault	Major	The PV string power cables arc or are in poor contact. • Cause ID 1 = PV1 • Cause ID 2 = PV2	Check whether the string cables arc or are in poor contact.
2011	String Reversed	Major	 The PV string is reversely connected. Cause ID = 1, 2 1: PV1 is reversely connected. 2: PV2 is reversely connected. 	Check whether the PV string is reversely connected to the inverter. If yes, wait until the PV string current decreases below 0.5 A, set DC switch to OFF, and adjust the PV string polarity.

 Table 8-2 Common alarms and troubleshooting measures

Alarm ID	Alarm Name	Alarm Severity	Possible Causes	Troubleshooting
2021	AFCI Check Failure	Major	 The AFCI check fails. Cause ID = 1, 2 1: The AFCI check circuit is abnormal. 2: The AFCI circuit is faulty. 	Turn off the AC output switch and DC input switch, and then turn them on after 5 minutes. If the fault persists, contact your dealer.
2032	Grid Failure	Major	 Cause ID = 1 The power grid experiences an outage. The AC circuit is disconnected or the AC circuit breaker is OFF. 	 Check the AC voltage. Check whether the AC circuit is disconnected or the AC circuit breaker is OFF.
2033	Grid Undervoltage	Major	Cause ID = 1 The grid voltage is below the lower threshold or the low voltage duration has lasted for more than the value specified by low voltage ride-through (LVRT).	 If the alarm occurs occasionally, the power grid may be abnormal temporarily. The inverter automatically recovers after detecting that the power grid becomes normal. If the alarm occurs frequently, check whether the power grid voltage is within the allowed range. If no, contact the local power operator. If yes, modify the grid undervoltage protection threshold through the mobile app, or network management system (NMS) with the consent of the local power operator. If the fault persists for a long time, check the connection between the AC switch and the output power cable.

Alarm ID	Alarm Name	Alarm Severity	Possible Causes	Troubleshooting
2034	Grid Overvoltage	Major	Cause ID = 1 The grid voltage exceeds the higher threshold or the high voltage has lasted for more than the value specified by high voltage ride-through (HVRT).	1. If the alarm occurs occasionally, the power grid may be abnormal temporarily. The inverter automatically recovers after detecting that the power grid becomes normal.
				2. If the alarm occurs frequently, check whether the power grid voltage is within the allowed range. If no, contact the local power operator. If yes, modify the grid overvoltage protection threshold through the mobile app, or NMS with the consent of the local power operator.
				3. Check whether the peak voltage of the power grid is too high. If the fault persists and cannot be rectified for a long time, contact the power operator.

Alarm ID	Alarm Name	Alarm Severity	Possible Causes	Troubleshooting
2036	Grid Overfrequency	Major	Cause ID = 1 Power grid exception: The actual power grid frequency is higher than the standard requirement for the local power grid.	 If the alarm occurs occasionally, the power grid may be abnormal temporarily. The inverter automatically recovers after detecting that the power grid becomes normal. If the alarm occurs frequently, check whether the power grid frequency is within the allowed range. If no, contact the local power operator. If yes, modify the grid overfrequency protection threshold through the mobile app, or NMS with the consent of the local power operator.
2037	Grid Underfrequenc y	Major	Cause ID = 1 Power grid exception: The actual power grid frequency is lower than the standard requirement for the local power grid.	 If the alarm occurs occasionally, the power grid may be abnormal temporarily. The inverter automatically recovers after detecting that the power grid becomes normal. If the alarm occurs frequently, check whether the power grid frequency is within the allowed range. If no, contact the local power operator. If yes, modify the grid underfrequency protection threshold through the mobile app, or NMS with the consent of the local power operator.

Alarm ID	Alarm Name	Alarm Severity	Possible Causes	Troubleshooting
2038	Unstable Grid Frequency	Major	Cause ID = 1 Power grid exception: The actual grid frequency change rate does not comply with the local power grid standard.	 If the alarm occurs occasionally, the power grid may be abnormal temporarily. The inverter automatically recovers after detecting that the power grid becomes normal. If the alarm occurs frequently, check whether the power grid frequency is within the allowed range. If no,
2039	Output Overcurrent	Major	Cause ID = 1 The power grid voltage drops dramatically or the power grid is short- circuited. As a result, the inverter transient output current exceeds the upper threshold and therefore the inverter protection is triggered.	 contact the local power operator. 1. The inverter detects its external working conditions in real time. After the fault is rectified, the inverter automatically recovers. 2. If the alarm occurs frequently and affects the energy yield of the power plant, check whether the output is short-circuited. If the fault persists, contact your dealer.
2040	Output DC Component Overhigh	Major	Cause ID = 1 The DC component of the inverter output current exceeds the specified upper threshold.	 The inverter detects its external working conditions in real time. After the fault is rectified, the inverter automatically recovers. If the alarm occurs frequently, contact your dealer.

Alarm ID	Alarm Name	Alarm Severity	Possible Causes	Troubleshooting
2051	Abnormal Residual Current	Major	Cause ID = 1 The insulation impedance of the input side to PE decreases when the inverter is operating.	 If the alarm occurs occasionally, the external circuit may be abnormal temporarily. The inverter automatically recovers after the fault is rectified. If the alarm occurs frequently or persists, check whether the impedance between the PV string and the ground is too low.

Alarm ID	Alarm Name	Alarm Severity	Possible Causes	Troubleshooting
2062	Low Insulation Resistance	Major	 Cause ID = 1 A short circuit occurs between the PV array and the ground. The ambient air of the PV array is damp and the insulation between the PV array and the ground is poor. 	 Check the output impedance of the PV array to ground. If there is a short circuit or lack of insulation, rectify it. Check that the PE cable of the inverter is correctly connected. If the impedance is lower than the specified protection threshold in rainy and cloudy days, set Insulation resistance protection using the mobile app, or NMS. Current insulation resistance: x MΩ, possible short circuit position: x%. The short circuit position is valid for a single PV string. If there are multiple PV strings, check the PV strings one by one. For details, see F Locating Insulation Resistance Faults. For details about how to query the low insulation resistance alarm, see HUAWEI SUN2000-2-6KTL-L1 and SUN6000-5/6KTL- L0 Inverter Low Insulation Resistance Fault Indication Guide.

Alarm ID	Alarm Name	Alarm Severity	Possible Causes	Troubleshooting
2063	Overtemperatu re	Minor	 Cause ID = 1 The inverter is installed in a place with poor ventilation. The ambient temperature is higher than the upper threshold. The inverter is not working properly. 	 Check the ventilation and ambient temperature of the inverter installation position. If the ventilation is poor or the ambient temperature exceeds the upper threshold, improve the ventilation and heat dissipation. If the ventilation and ambient temperature both meet requirements, contact your dealer.

Alarm ID	Alarm Name	Alarm Severity	Possible Causes	Troubleshooting
2064	Device Fault	Major	 An unrecoverable fault has occurred on a circuit inside the inverter. Cause ID = 1–12 1: The Boost input is short-circuited. 2: The Boost input experiences overcurrent. 3: The control circuit is faulty. 4: The inverter circuit is abnormal. 5: The residual current sensor is faulty. 6: The temperature detection fails. 7: EEPROM read/write fails. 8: The auxiliary power supply is abnormal. 9: The grid-tied relay is abnormal. 10: The DC bus experiences overvoltage. 11: The DC bus experiences undervoltage. 12: The DC bus experiences voltage imbalance. 	Turn off the AC output switch and DC input switch, and then turn them on after 5 minutes. If the fault persists, contact your dealer.

Alarm ID	Alarm Name	Alarm Severity	Possible Causes	Troubleshooting	
2065	Upgrade Failed or Version Mismatch	Minor	 The upgrade does not complete normally. Cause ID = 1-4, 7 1. The software and hardware of the main controller do not match. 2: The main and auxiliary controller software versions do not match. 3: The monitoring and power controller software versions do not match. 3: The monitoring and power controller software versions do not match. 4: The upgrade fails. 		
61440	Monitoring Unit Faulty	Minor	 Cause ID = 1 The flash memory is insufficient. The flash memory has bad sectors. 	Turn off the AC output switch and DC input switch, and then turn them on after 5 minutes. If the fault persists, replace the monitoring board or contact your dealer.	
2067	Faulty Power Collector	Major	Cause ID = 1 The smart power sensor is disconnected.	 Check that the configured power meter model is the same as the actual model. Check that the communications parameters for the smart power sensors are the same as the inverte RS485 configurations. Check whether the smart power sensor is powered on and whether the RS485 communications cable i connected. 	
2070	Active Islanding	Major	Cause ID = 1 When the power grid experiences an AC power outage, the inverter detects islanding proactively.	Check that the grid connection voltage of the inverter is normal.	

D NOTE

Contact your dealer if all failure analysis procedures listed above are completed and the fault still exists.

9 Inverter Disposal

9.1 Removing a Inverter

Procedure

- Step 1 Power off the inverter. For details, see 8.1 System Power-Off.
- **Step 2** Disconnect all cables from the inverter, including signal cables, DC input power cables, AC output power cables, and PE cables.
- **Step 3** Remove the WLAN antenna or the Smart Dongle from the inverter.
- **Step 4** Remove the inverter from the mounting bracket.
- **Step 5** Remove the mounting bracket.

----End

9.2 Packing a Inverter

- If the original packaging is available, put the inverter inside it and then seal it using adhesive tape.
- If the original packaging is unavailable, put the inverter inside a suitable hard carton and seal it properly.

9.3 Disposing a Inverter

If the inverter service life expires, dispose the inverter according to the local disposal rules for electrical equipment and electronic component waste.

10 Technical Parameters

10.1 Inverter Technical Specifications

Efficiency

Technical Specification s	Smart Solar Inverter- 2KTL-L0	Smart Solar Inverter- 3KTL-L0	Smart Solar Inverter- 3.68KTL- L0	Smart Solar Inverter- 4KTL-L0	Smart Solar Inverter- 4.6KTL- L0	Smart Solar Inverter- 5KTL-L0	Smart Solar Inverter- 6KTL-L0
Maximum efficiency	98.2%	98.3%	98.4%	98.4%	98.4%	98.4%	98.4%
European weighted efficiency	96.7%	97.3%	97.3%	97.5%	97.7%	97.8%	97.8%

Input

Technical Specification s	Smart Solar Inverter- 2KTL-L0	Smart Solar Inverter- 3KTL-L0	Smart Solar Inverter- 3.68KTL- L0	Smart Solar Inverter- 4KTL-L0	Smart Solar Inverter- 4.6KTL- L0	Smart Solar Inverter- 5KTL-L0	Smart Solar Inverter- 6KTL-L0
Maximum input voltage ^a	600 V						
Maximum input current (per MPPT)	12.5A						

Technical Specification s	Smart Solar Inverter- 2KTL-L0	Smart Solar Inverter- 3KTL-L0	Smart Solar Inverter- 3.68KTL- L0	Smart Solar Inverter- 4KTL-L0	Smart Solar Inverter- 4.6KTL- L0	Smart Solar Inverter- 5KTL-L0	Smart Solar Inverter- 6KTL-L0
Maximum short-circuit current (per MPPT)	18 A						
Operating voltage range	80-600 V						
Startup voltage	100 V						
MPPT voltage range	90–560 V						
Rated input voltage	360 V						
Power supply	2						
Number of MPPTs	2						
Note a: The ma	iximum inpu	t voltage ind	cludes the P	V input volta	ige.		

Output

Technical Specification s	Smart Solar Inverter- 2KTL-L0	SmartSmartSmartSmartSmartSmartSolarSolarSolarSolarSolarSolarSolarInverter-Inverter-Inverter-Inverter-Inverter-Inverter-3KTL-L03.68KTL-4KTL-L0L0L06KTL									
Rated output power	2000 W	DOO W 3000 W 3680 W 4000 W 4600 W 5000 W ^a 6000 W									
Maximum apparent power	2200 VA	2200 VA 3300 VA 3680 VA 4400 VA 5000 VA ^b 5500 VA ^c 6000 VA									
Rated output voltage	220 V/230	220 V/230 V/240 V									
Adapted power grid frequency	50 Hz/60 H	łz									

Technical Specification s	Smart Solar Inverter- 2KTL-L0	Smart Solar Inverter- 3KTL-L0	Smart Solar Inverter- 3.68KTL- L0	Smart Solar Inverter- 4KTL-L0	Smart Solar Inverter- 4.6KTL- L0	Smart Solar Inverter- 5KTL-L0	Smart Solar Inverter- 6KTL-L0			
Maximum output current	10 A	15 A	16 A	20 A	23 A ^d	25 A ^d	27.3 A			
Power factor	0.8 leading	0.8 leading and 0.8 lagging								
Maximum total harmonic distortion (rated power)	≤ 3%									
• Note a: The	•	•		5						

- Note b: The maximum apparent power is 4600 VA for the VDE-AR-N 4105 grid code, and 4999 VA for the AS4777 grid code.
- Note c: The maximum apparent power is 5000 VA for the AS4777 grid code.
- Note d: The maximum output current is 21.7 A of the AS4777 grid code.

Protection

Technical Specification s	Smart Solar Inverter- 2KTL-L0	Smart Solar Inverter- 3KTL-L0	Smart Solar Inverter- 3.68KTL- L0	Smart Solar Inverter- 4KTL-L0	Smart Solar Inverter- 4.6KTL- L0	Smart Solar Inverter- 5KTL-L0	Smart Solar Inverter- 6KTL-L0				
Anti-islanding protection	Supported	Supported									
DC reverse polarity protection	Supported	Supported									
Insulation resistance detection	Supported	Supported									
Residual current monitoring unit (RCMU)	If an exterr	Supported This inverter includes an integrated residual current device (RCD). If an external residual current device (RCD) is used, a device of type A should be used, with a tripping current of 100 mA or higher.									
AC short- circuit protection	Supported										

Technical Specification s	Smart Solar Inverter- 2KTL-L0	Smart Solar Inverter- 3KTL-L0	Smart Solar Inverter- 3.68KTL- L0	Smart Solar Inverter- 4KTL-L0	Smart Solar Inverter- 4.6KTL- L0	Smart Solar Inverter- 5KTL-L0	Smart Solar Inverter- 6KTL-L0
AC overcurrent protection	Supported						
Overtemperat ure protection	Supported						
DC surge protection	Supported						
AC surge protection	Supported						
AC overvoltage protection	Supported						
Arc fault protection	Supported						

Communications

Technical Specification s	Smart Solar Inverter- 2KTL-L0Smart SolarSmart Solar Inverter- 								
Display	LED indicat	tors; WLAN+	Арр						
WLAN	Supported	Supported							
RS485	Supported								
Maximum RS485 communicatio n distance	1000 m	1000 m							
Communicati ons expansion module	WLAN-FE (WLAN-FE (optional)/4G (optional)							

Common Parameters

Technical Specification s	Smart Solar Inverter -2KTL- L0	Smart Solar Inverter -3KTL- L0	Smart Solar Inverter -3.68KT L-L0	Smart Solar Inverter -4KTL- L0	Smart Solar Inverter -4.6KTL- L0	Smart Solar Inverter -5KTL- L0	Smart Solar Inverter-6KTL- L0				
Topology	Transform	ransformerless									
IP rating	IP65										
Cooling mode	Natural co	ooling									
Dimensions (H x W x D)	365 mm >	365 mm x 365 mm x 156 mm (including the mounting bracket)									
Weight	12 kg	12 kg									
Operating temperature	-25°C to - +45°C)	-25°C to +60°C (derated when the temperature is higher than +45°C) -25°C to +60° (derated when the temperature is higher than +40°C)									
Humidity	0–100% F	RH									
Operating altitude	0–4000 m	(derated a	above 2000	m)							

A Grid Code

D NOTE

The grid codes are subject to change. The listed codes are for reference only.

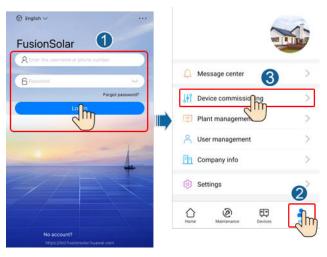
Table A-1 Grid Code

Nationa l/ Regiona l Grid Code	Descripti on	Smart Solar Inverter -2KTL- L0	Smart Solar Inverter -3KTL- L0	Smart Solar Inverter -3.68KT L-L0	Smart Solar Inverter -4KTL- L0	Smart Solar Inverter -4.6KTL- L0	Smart Solar Inverter -5KTL- L0	Smart Solar Inverter -6KTL- L0
VDE-AR- N-4105	Germany LV power grid	Support ed	Support ed	Support ed	Support ed	Support ed	-	-
UTE C 15-712- 1(A)	France mainland power grid	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed
UTE C 15-712- 1(B)	France island power grid	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed
UTE C 15-712- 1(C)	France island power grid	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed
CEI0-21	Italy power grid	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed
RD1699/ 661	Spain LV power grid	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed

Nationa l/ Regiona l Grid Code	Descripti on	Smart Solar Inverter -2KTL- L0	Smart Solar Inverter -3KTL- L0	Smart Solar Inverter -3.68KT L-L0	Smart Solar Inverter -4KTL- L0	Smart Solar Inverter -4.6KTL- L0	Smart Solar Inverter -5KTL- L0	Smart Solar Inverter -6KTL- L0
C10/11	Belgium power grid	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	-
AUSTRA LIA- AS4777_ A-LV230	Australia power grid	Support ed	Support ed	-	Support ed	Support ed	Support ed	Support ed
AUSTRA LIA- AS4777_ B-LV230	Australia power grid	Support ed	Support ed	-	Support ed	Support ed	Support ed	Support ed
AUSTRA LIA- AS4777_ C-LV230	Australia power grid	Support ed	Support ed	-	Support ed	Support ed	Support ed	Support ed
AUSTRA LIA- AS4777_ NZ- LV230	New Zealand Power grid	Support ed	Support ed	-	Support ed	Support ed	Support ed	Support ed
IEC6172 7	IEC 61727 LV (50 Hz)	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed
IEC6172 7-60Hz	IEC 61727 LV (60 Hz)	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed
TAI-PEA	Thailand grid-tied standard power grid	-	Support ed	-	-	-	Support ed	-
TAI-MEA	Thailand grid-tied standard power grid	-	Support ed	-	-	-	Support ed	-
EN5054 9-LV	Ireland power grid	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed

Nationa l/ Regiona l Grid Code	Descripti on	Smart Solar Inverter -2KTL- L0	Smart Solar Inverter -3KTL- L0	Smart Solar Inverter -3.68KT L-L0	Smart Solar Inverter -4KTL- L0	Smart Solar Inverter -4.6KTL- L0	Smart Solar Inverter -5KTL- L0	Smart Solar Inverter -6KTL- L0
EN5054 9-SE	Sweden LV	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed
ABNT NBR 16149	Brazil power grid	Support ed	Support ed	-	Support ed	-	Support ed	Support ed
Fuel- Engine- Grid	Diesel generator hybrid power grid	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed
Fuel- Engine- Grid-60 Hz	Diesel generator hybrid power grid	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed
Austria	Austrian power grid	Support ed	Support ed	Support ed	-	-	-	-
G98	UK G98 power grid	Support ed	Support ed	Support ed	-	-	-	-
G99- TYPEA- LV	UK G99_Type A_LV power grid	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed
NRS-097 -2-1	South Africa Power Grid	Support ed	Support ed	Support ed	Support ed	Support ed		
SWITZE RLAND- NA/EEA: 2020- LV230	Switzerla nd	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed
SINGAP ORE	Singapor e LV power grid	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed

Nationa l/ Regiona l Grid Code	Descripti on	Smart Solar Inverter -2KTL- L0	Smart Solar Inverter -3KTL- L0	Smart Solar Inverter -3.68KT L-L0	Smart Solar Inverter -4KTL- L0	Smart Solar Inverter -4.6KTL- L0	Smart Solar Inverter -5KTL- L0	Smart Solar Inverter -6KTL- L0
HONGK ONG	Hong Kong LV power grid	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed	Support ed
DUBAI	DUBAI LV power grid	Support ed	Support ed	Support ed	Support ed	-	Support ed	Support ed
Island- Grid	Island- Grid	Support ed	Support ed	Support ed	Support ed	-	Support ed	Support ed
DANMA RK- EN5054 9-DK1- LV230	Denmark	Support ed	Support ed	Support ed	Support ed	-	Support ed	Support ed
DANMA RK- EN5054 9-DK2- LV230	Denmark	Support ed	Support ed	Support ed	Support ed	-	Support ed	Support ed


B Device Commissioning

Step 1 Access Device Commissioning screen.

Figure B-1 Method 1: before login (not connected to the Internet)

Figure B-2 Method 2: after login (connected to the Internet)

Step 2 Connect to the solar inverter WLAN and log in to the device commissioning screen as the **installer** user.

NOTICE

- If the mobile phone is directly connected to the inverter, the visible distance between the inverter and the mobile phone must be less than 3 m when a built-in antenna is used and less than 50 m when an external antenna is used to ensure the communication quality between the app and the inverter. The distances are for reference only and may vary with mobile phones and shielding conditions.
- When connecting the inverter to the WLAN over a router, ensure that the mobile phone and inverter are in the WLAN coverage of the router and the inverter is connected to the router.
- The router supports WLAN (IEEE 802.11 b/g/n, 2.4 GHz) and the WLAN signal reaches the inverter.
- The WPA, WPA2, or WPA/WPA2 encryption mode is recommended for routers. Enterprise-level encryption is not supported (for example, public hotspots requiring authentication such as airport WLAN). WEP and WPA TKIP are not recommended because these two encryption modes have serious security defects. If the access fails in WEP mode, log in to the router and change the encryption mode of the router to WPA2 or WPA/WPA2.

NOTE

- Obtain the initial password for connecting to the solar inverter WLAN from the label on the side of the solar inverter.
- Set the password at the first login. To ensure account security, change the password periodically and keep the new password in mind. Not changing the initial password may cause password disclosure. A password left unchanged for a long period of time may be stolen or cracked. If a password is lost, devices cannot be accessed. In these cases, the user is liable for any loss caused to the PV plant.
- When you access the **Device Commissioning** screen of the inverter for the first time, you need to manually set the login password because the inverter does not have an initial login password.

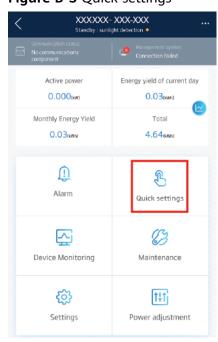


Figure B-3 Quick settings

C Setting Power Adjustment Parameters

Prerequisites

You have logged in to the app as **installer**.

Procedure

- **Step 1** On the home screen, tap **Power Adjustment** and set power parameters as required.
 - SUN2000-XXX Power adjustment Active power control Reactive power control Energy yield of current day 0.000_{two} 0.00_{nve} Grid-tied point control C Monthly Energy Yield Total 0.00owns 66.65km P Ł Alarm management Quick settings **₽** B Device Monitoring Maintenance 63 Settings

Figure C-1 Setting Power Adjustment Parameters

NOTE

Power Quality Response Modes supported by the inverter can be implemented by setting Voltage rise suppression parameters.

Power derating for voltage variation (Volt-Watt mode): The inverter power output will vary in response to the AC grid voltage. This is switched on by default. This mode can be enabled via the configuration App. Please refer to the **Set Q-U and P-U through FusionSolar APP**, or contact Technical Support for more information.

Reactive power regulation for voltage variation (Volt-VAr mode): The power output or input will vary in response to the AC grid voltage. This function is switched off by default. This mode can be enabled via the configuration App. Please refer to the **Set Q-U and P-U through FusionSolar APP**, or contact Technical Support for more information.

D Resetting Password

- Step 1 Ensure that the inverter connects to the AC and DC power supplies at the same time. Indicators r→ and = are steady green or blink at long intervals for more than 3 minutes.
- **Step 2** Perform the following operations within 3 minutes:
 - 1. Turn off the AC switch and set the DC switch at the bottom of the inverter to OFF. Wait until all the LED indicators on the inverter panel turn off.
 - Turn on the AC switch and set the DC switch to ON. Ensure that the indicator *i* is blinking green at long intervals.
 - 3. Turn off the AC switch and set the DC switch to OFF. Wait until all LED indicators on the inverter panel are off.
 - 4. Turn on the AC switch and set the DC switch to ON. Wait until all indicators on the solar inverter panel blink and turn off 30 seconds later.
- **Step 3** Reset the password within 10 minutes. (If no operation is performed within 10 minutes, all inverter parameters remain unchanged.)
 - 1. Wait until the indicator \mathbf{r} blinks green at long intervals.
 - 2. Obtain the initial WLAN hotspot name (SSID) and initial password (PSW) from the label on the side of the inverter and connect to the app.
 - 3. On the login screen, set a new login password and log in to the app.

Figure D-1 Setting the password

516	
-	0
SN: XXXXXXXXXXX	
314. ^^^^	
installer	\sim
installer	~
Installer Enter your password.	~
Installer Enter your password. Security level:	~
Installer Enter your password.	

- **Step 4** Set router and management system parameters to implement remote management.
 - Setting router parameters

Log in to the FusionSolar app, choose **Device Commissioning** > **Settings** > **Communication configuration** > **Router connection settings**, and set router parameters.

Figure D-2 Setting router parameters

< Settings		< c	ommunication configuration		C Router connection	settin (4) Connect
(a) Grid parameters	>	inve	rter WLAN settings	2	· · · · ·	
Protection parameters	>	Rout	er connection settings	>		- 3
(i) Feature parameters	>	888 RS4	85_1	>	WLAN	~
E Power adjustment	>	🔄 Man	agement System Configuration	>	 Password	×
\bigcirc Time setting	1	Don:	gle parameter settings	>	DHCP	
↑↓ Communication configuration	>				IP address Subnet mask	
					Gateway	
					Primary DNS server	
					Secondary DNS server	

• Setting management system parameters

Log in to the FusionSolar app, choose **Device Commissioning** > **Settings** > **Communication configuration** > **Management System Configuration**, and set management system parameters.

Igure D D Setting management System parameters	Figure D)-3	Setting	management	system	parameters
---	----------	-----	---------	------------	--------	------------

< Settings		< Communication configuration	< Management system Connect
(Grid parameters	>	Inverter WLAN settings	Connect disconnected
Protection parameters	>	Router connection settings	
O Feature parameters	>	📰 RS485_1	Domain name >
Power adjustment	>	Management System Configuration	Port
\bigcirc Time setting	1	Dongle parameter settings	SSL encryption
\hat{T}_{j} Communication configuration	>		Registration code Encrypted certificate management SN

• (Optional) Resetting the WLAN password

Log in to the FusionSolar app, choose **Device Commissioning** > **Settings** > **Communication configuration** > **Inverter WLAN settings**, and reset the WLAN password.

Settings		<	Communication configurati	on	Inverter WLAN setting	ngs Finish
Grid parameters	>	1	Inverter WLAN settings	>	WLAN name	4
Protection parameters	>		C Router connection settings	2	Encryption mode	3
Feature parameters	>		RS485_1	>	New password Security level:	5er
Power adjustment	>	Ē	Management System Configuration	>	Confirm new	~
🕀 Time setting	1		Dongle parameter settings	>	Antenna switch mode	×
1 Communication configuration	n >				WLAN AP	Ų
					SSID broadcast	~
					Gateway	8
					Subnet mask	0
					*	

Figure D-4 Resetting the WLAN password

E Rapid Shutdown

Perform the following step to trigger rapid shutdown:

- Method 1: Turn off the AC switch between the solar inverter and the power grid.
- Method 2: Turn off the DC switch at the bottom of the inverter. (If an extra DC switch is connected to the input side of the inverter, turning off this DC switch will not trigger rapid shutdown.)

Locating Insulation Resistance Faults

If the ground resistance of a PV string connected to a solar inverter is too low, the solar inverter generates a **Low Insulation Resistance** alarm.

The possible causes are as follows:

- A short circuit occurs between the PV array and the ground.
- The ambient air of the PV array is damp and the insulation between the PV array and the ground is poor.

To locate the fault, connect each PV string to a solar inverter, power on and check the solar inverter, and locate the fault based on the alarm information reported by the FusionSolar app. Perform the following steps to locate an insulation resistance fault.

NOTICE

If two or more ground insulation faults occur in a single PV string, the following method cannot locate the fault. You need to check the PV modules one by one.

- **Step 1** The AC power supply is connected, and set the DC switch at the bottom of the solar inverter to OFF.
- Step 2 Connect each PV string to the solar inverter and set the DC switch to ON. If the solar inverter status is Shutdown: Command, choose Device Commissioning > Maintenance > Inverter ON/OFF on the app and send a startup command.
- Step 3 Log in to the FusionSolar app and choose My > Device Commissioning. On the Device Commissioning screen, connect and log in to the solar inverter, and access the Alarm management screen. Check whether the Low Insulation Resistance alarm is reported.
 - If the Low Insulation Resistance alarm is not reported one minute after the DC is supplied, choose Device Commissioning > Maintenance > Inverter ON/OFF on the app and send a shutdown command. Set the DC switch to OFF and go to Step 2 to connect another PV string to the solar inverter for a check.
 - If a **Low Insulation Resistance** alarm is still reported one minute after the DC is supplied, check the percentage for possible short-circuit positions on the **Alarm details** page and go to **Step 4**.

Figure F-1 Alarm details

3	
<	Alarm details
Alarm infor	mation
Alarm name	
Low insulatio	n resistance
Alarm genera	tion time
Alarm ID	Cause ID
2062	1
Alarm seve	rity
Major	
Possible ca	use
1. The PV arr	ay is short-circuited to ground;
	ay is in a moist environment and the power
cable is not v	vell insulated to ground;
Suggestion	
	impedance between the PV array output
and PE, and e points.	eliminate short circuits and poor insulation
	the PE cable for the inverter is connected
correctly.	the FC cable for the interfer is connected
	sure that the impedance is less than the pre-
set protection	n threshold in a cloudy or rainy environment,
log in to the r	mobile phone app, SmartLogger, or NMS and
	alation impedance protection threshold.
position: 98.5 single PV stri	ation resistance: 0MΩ, possible short circuit %. The short circuit position is valid for a ng. If there are multiple PV strings, check
the PV string	s one by one.

D NOTE

- The positive and negative terminals of a PV string are connected to the PV+ and PVterminals of the solar inverter. The PV- terminal represents a possibility of 0% for the short-circuit position and the PV+ terminal represents a possibility of 100% for the short-circuit position. Other percentages indicate that the fault occurs on a PV module or cable in the PV string.
- Possible fault position = Total number of PV modules in a PV string x Percentage of
 possible short-circuit positions. For example, if a PV string consists of 14 PV modules
 and the percentage of the possible short-circuit position is 34%, the possible fault
 position is 4.76 (14 x 34%), indicating that the fault is located near PV module 4,
 including the previous and the next PV modules and the cables of PV module 4. The
 solar inverter has a detection precision of ±1 PV module.
- **Step 4** Set the DC switch to OFF and check whether the connector or DC cable between the possible faulty PV modules are damaged.
 - If yes, replace the damaged connector or DC cable, set the DC switch to ON, and view the alarm information.
 - If the Low Insulation Resistance alarm is not reported one minute after the DC is supplied, the inspection on the PV string is complete. Choose Device Commissioning > Maintenance > Inverter ON/OFF on the app and send a shutdown command. Set the DC switch to OFF. Go to Step 2 to check other PV strings. Then go to Step 8.
 - If the Low Insulation Resistance alarm is still reported one minute after the DC is supplied, go to Step 5.
 - If not, go to **Step 5**.
- **Step 5** Set the DC switch to OFF, disconnect the possible faulty PV modules from the PV string, and connect a DC extension cable with an MC4 connector to the adjacent PV modules. Set the DC switch to ON and view the alarm information.
 - If the Low Insulation Resistance alarm is not reported one minute after the DC is supplied, the fault occurs on the disconnected PV module. Choose Device Commissioning > Maintenance > Inverter ON/OFF on the app and send a shutdown command. Go to Step 7.

- If the **Low Insulation Resistance** alarm is still reported one minute after the DC is supplied, the fault does not occur on the disconnected PV module. Go to **Step 6**.
- **Step 6** Set the DC switch to OFF, reconnect the removed PV module, and repeat **Step 5** to check the adjacent PV modules.
- **Step 7** Determine the position of the ground insulation fault.
 - 1. Disconnect the possible faulty PV module from.
 - Set the DC switch to OFF. Replace the faulty component to rectify the insulation resistance fault. Go to Step 2 to check other PV strings. Then go to Step 8.
- Step 8 Set the DC switch to ON. If the solar inverter status is Shutdown: Command, choose Device Commissioning > Maintenance > Inverter ON/OFF on the app and send a startup command.

G DRM Configuration Guide for Standard As NZS4777.2

If Demand Response Modes (DRM0) are required, then the installer will need to connect the Huawei SmartLogger3000. Refer to the Huawei document SmartLogger3000 DRM Configuration Guide for Standard AS NZS4777.2 of how to connect the DRED and how to configure the inverter and Smart Logger for use with the DRED.

Acronyms and Abbreviations

Α	
AC	alternating current
D	
DC	direct current
DCI	direct current identification
F	
FRT	fault ride through
Н	
HVRT	high voltage ride-through
I	
ID	identifier
L	
LED	light emitting diode
LVRT	low voltage ride-through
Μ	
МАС	Media Access Control
МРРТ	maximum power point tracking
	· · · · · ·
Р	
PE	protective earthing

PV	photovoltaic
R	
RCMU	residual current monitoring unit
RH	relative humidity
S	
SN	serial number